Skip to main content

Python API of the DFT-D3 project

Project description

Python interface for the D3 dispersion model. This Python project is targeted at developers who want to interface their project via Python with s-dftd3.

This interface provides access to the C-API of s-dftd3 via the CFFI module. The low-level CFFI interface is available in the dftd3.libdftd3 module and only required for implementing other interfaces. A more pythonic interface is provided in the dftd3.interface module which can be used to build more specific interfaces.

from dftd3.interface import RationalDampingParam, DispersionModel
import numpy as np
numbers = np.array([1, 1, 6, 5, 1, 15, 8, 17, 13, 15, 5, 1, 9, 15, 1, 15])
positions = np.array([  # Coordinates in Bohr
    [+2.79274810283778, +3.82998228828316, -2.79287054959216],
    [-1.43447454186833, +0.43418729987882, +5.53854345129809],
    [-3.26268343665218, -2.50644032426151, -1.56631149351046],
    [+2.14548759959147, -0.88798018953965, -2.24592534506187],
    [-4.30233097423181, -3.93631518670031, -0.48930754109119],
    [+0.06107643564880, -3.82467931731366, -2.22333344469482],
    [+0.41168550401858, +0.58105573172764, +5.56854609916143],
    [+4.41363836635653, +3.92515871809283, +2.57961724984000],
    [+1.33707758998700, +1.40194471661647, +1.97530004949523],
    [+3.08342709834868, +1.72520024666801, -4.42666116106828],
    [-3.02346932078505, +0.04438199934191, -0.27636197425010],
    [+1.11508390868455, -0.97617412809198, +6.25462847718180],
    [+0.61938955433011, +2.17903547389232, -6.21279842416963],
    [-2.67491681346835, +3.00175899761859, +1.05038813614845],
    [-4.13181080289514, -2.34226739863660, -3.44356159392859],
    [+2.85007173009739, -2.64884892757600, +0.71010806424206],
])
model = DispersionModel(numbers, positions)
res = model.get_dispersion(RationalDampingParam(method="pbe0"), grad=False)
print(res.get("energy"))  # Results in atomic units
# => -0.029489232932494884

QCSchema Integration

This Python API natively understands QCSchema and the QCArchive infrastructure. If the QCElemental package is installed the dftd3.qcschema module becomes importable and provides the run_qcschema function.

from dftd3.qcschema import run_qcschema
import qcelemental as qcel
atomic_input = qcel.models.AtomicInput(
    molecule = qcel.models.Molecule(
        symbols = ["O", "H", "H"],
        geometry = [
            0.00000000000000,  0.00000000000000, -0.73578586109551,
            1.44183152868459,  0.00000000000000,  0.36789293054775,
           -1.44183152868459,  0.00000000000000,  0.36789293054775
        ],
    ),
    driver = "energy",
    model = {
        "method": "tpss",
    },
    keywords = {
        "level_hint": "d3bj",
    },
)

atomic_result = run_qcschema(atomic_input)
print(atomic_result.return_result)
# => -0.0004204244108151285

ASE Integration

To integrate with ASE this interface implements an ASE Calculator. The DFTD3 calculator becomes importable if an ASE installation is available.

>>> from ase.build import molecule
>>> from dftd3.ase import DFTD3
>>> atoms = molecule('H2O')
>>> atoms.calc = DFTD3(method="TPSS", damping="d3bj")
>>> atoms.get_potential_energy()
-0.0114416338147162
>>> atoms.calc.set(method="PBE")
{'method': 'PBE'}
>>> atoms.get_potential_energy()
-0.009781913226281063
>>> atoms.get_forces()
array([[-0.00000000e+00 -0.00000000e+00  9.56568982e-05]
       [-0.00000000e+00 -4.06046858e-05 -4.78284491e-05]
       [-0.00000000e+00  4.06046858e-05 -4.78284491e-05]])

To use the DFTD3 calculator as dispersion correction the calculator can be combined using the SumCalculator from the ase.calculators.mixing module.

>>> from ase.build import molecule
>>> from ase.calculators.mixing import SumCalculator
>>> from ase.calculators.nwchem import NWChem
>>> from dftd3.ase import DFTD3
>>> atoms = molecule('H2O')
>>> atoms.calc = SumCalculator([DFTD3(method="PBE", damping="d3bj"), NWChem(xc="PBE")])

For convenience DFTD3 allows to combine itself with another calculator by using the add_calculator method which returns a SumCalculator:

>>> from ase.build import molecule
>>> from ase.calculators.emt import EMT
>>> from dftd4.ase import DFTD3
>>> atoms = molecule("C60")
>>> atoms.calc = DFTD3(method="pbe", damping="d3bj").add_calculator(EMT())
>>> atoms.get_potential_energy()
7.513593999944228
>>> [calc.get_potential_energy() for calc in atoms.calc.calcs]
[-4.850025823367818, 12.363619823312046]

The individual contributions are available by iterating over the list of calculators in calc.calcs. Note that DFTD3 will always place itself as first calculator in the list.

PySCF support

Integration with PySCF is possible by using the dftd3.pyscf module. The module provides a DFTD3Dispersion class to construct a PySCF compatible calculator for evaluating the dispersion energy and gradients.

>>> from pyscf import gto
>>> import dftd3.pyscf as disp
>>> mol = gto.M(
...     atom="""
...          C   -0.189833176  -0.645396435   0.069807761
...          C    1.121636324  -0.354065576   0.439096514
...          C    1.486520953   0.962572632   0.712107225
...          C    0.549329390   1.989209324   0.617868956
...          C   -0.757627135   1.681862630   0.246856908
...          C   -1.138190460   0.370551816  -0.028582325
...          Br  -2.038462778   3.070459841   0.115165429
...          H    1.852935245  -1.146434699   0.514119204
...          H    0.825048723   3.012176989   0.829385472
...          H    2.502259769   1.196433556   1.000317333
...          H   -2.157140187   0.151608161  -0.313181471
...          H   -0.480820487  -1.664983631  -0.142918416
...          S   -4.157443472   5.729584377  -0.878761129
...          H   -4.823791426   4.796089466  -1.563433338
...          C   -2.828338520   5.970593053  -2.091189515
...          H   -2.167577293   6.722356639  -1.668621815
...          H   -2.264954814   5.054835899  -2.240198499
...          H   -3.218524904   6.337447714  -3.035087058
...          """
... )
>>> d3 = disp.DFTD3Dispersion(mol, xc="PW6B95", version="d3bj")
>>> d3.kernel()[0]
array(-0.01009386)
>>> d3.version = "d3zero"  # Change to zero damping
>>> d3.kernel()[0]
array(-0.00574098)
>>> d3.atm = True  # Activate three-body dispersion
>>> d3.kernel()[0]
array(-0.00574289)

To make use of the dispersion correction together with other calculators, the energy method allows to apply a dispersion correction to an existing calculator.

>>> from pyscf import gto, scf
>>> import dftd3.pyscf as disp
>>> mol = gto.M(
...     atom="""
...          O  -1.65542061  -0.12330038   0.00000000
...          O   1.24621244   0.10268870   0.00000000
...          H  -0.70409026   0.03193167   0.00000000
...          H  -2.03867273   0.75372294   0.00000000
...          H   1.57598558  -0.38252146  -0.75856129
...          H   1.57598558  -0.38252146   0.75856129
...          """
... )
>>> grad = disp.energy(scf.RHF(mol)).run().nuc_grad_method()
converged SCF energy = -149.947191000075
>>> g = grad.kernel()
--------------- DFTD3 gradients ---------------
         x                y                z
0 O     0.0171886976     0.0506606246     0.0000000000
1 O     0.0383596853    -0.0459057549     0.0000000000
2 H    -0.0313133974    -0.0125865676    -0.0000000000
3 H     0.0066705789    -0.0380501872     0.0000000000
4 H    -0.0154527822     0.0229409425     0.0215141991
5 H    -0.0154527822     0.0229409425    -0.0215141991
----------------------------------------------

Installing

Conda Version

This project is packaged for the conda package manager and available on the conda-forge channel. To install the conda package manager we recommend the miniforge installer. If the conda-forge channel is not yet enabled, add it to your channels with

conda config --add channels conda-forge

Once the conda-forge channel has been enabled, this project can be installed with:

conda install dftd3-python

Now you are ready to use dftd3, check if you can import it with

>>> import dftd3
>>> from dftd3.libdftd3 import get_api_version
>>> get_api_version()
'1.2.0'

Building the extension module

To perform an out-of-tree build some version of s-dftd3 has to be available on your system and preferably findable by pkg-config. Try to find a s-dftd3 installation you build against first with

pkg-config --modversion s-dftd3

Adjust the PKG_CONFIG_PATH environment variable to include the correct directories to find the installation if necessary.

Using pip

PyPI

This project support installation with pip as an easy way to build the Python API. Precompiled Python wheels for Linux are available on pypi and can be installed with

pip install dftd3

Other platforms need to build from source, the following dependencies are required to do so

  • C compiler to build the C-API and compile the extension module (the compiler name should be exported in the CC environment variable)

  • Python 3.6 or newer

  • The following Python packages are required additionally

Make sure to have your C compiler set to the CC environment variable

export CC=gcc

Install the project with pip

pip install .

If you already have a s-dftd3 installation, e.g. from conda-forge, you can build the Python extension module directly without cloning this repository

pip install "https://github.com/dftd3/simple-dftd3/archive/refs/heads/main.zip#egg=dftd3-python&subdirectory=python"

Using meson

This directory contains a separate meson build file to allow the out-of-tree build of the CFFI extension module. The out-of-tree build requires

  • C compiler to build the C-API and compile the extension module

  • meson version 0.53 or newer

  • a build-system backend, i.e. ninja version 1.7 or newer

  • Python 3.6 or newer with the CFFI package installed

Setup a build with

meson setup _build -Dpython_version=$(which python3)

The Python version can be used to select a different Python version, it defaults to 'python3'. Python 2 is not supported with this project, the Python version key is meant to select between several local Python 3 versions.

Compile the project with

meson compile -C _build

The extension module is now available in _build/dftd3/_libdftd3.*.so. You can install as usual with

meson configure _build --prefix=/path/to/install
meson install -C _build

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dftd3-1.2.0.tar.gz (667.8 kB view details)

Uploaded Source

Built Distributions

dftd3-1.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

dftd3-1.2.0-pp310-pypy310_pp73-macosx_14_0_arm64.whl (1.3 MB view details)

Uploaded PyPy macOS 14.0+ ARM64

dftd3-1.2.0-pp310-pypy310_pp73-macosx_12_0_x86_64.whl (2.0 MB view details)

Uploaded PyPy macOS 12.0+ x86-64

dftd3-1.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

dftd3-1.2.0-pp39-pypy39_pp73-macosx_14_0_arm64.whl (1.3 MB view details)

Uploaded PyPy macOS 14.0+ ARM64

dftd3-1.2.0-pp39-pypy39_pp73-macosx_12_0_x86_64.whl (2.0 MB view details)

Uploaded PyPy macOS 12.0+ x86-64

dftd3-1.2.0-pp38-pypy38_pp73-win_amd64.whl (1.9 MB view details)

Uploaded PyPy Windows x86-64

dftd3-1.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

dftd3-1.2.0-pp38-pypy38_pp73-macosx_12_0_x86_64.whl (2.0 MB view details)

Uploaded PyPy macOS 12.0+ x86-64

dftd3-1.2.0-cp313-cp313-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.13 Windows x86-64

dftd3-1.2.0-cp313-cp313-musllinux_1_2_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

dftd3-1.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

dftd3-1.2.0-cp313-cp313-macosx_14_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.13 macOS 14.0+ ARM64

dftd3-1.2.0-cp313-cp313-macosx_12_0_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.13 macOS 12.0+ x86-64

dftd3-1.2.0-cp312-cp312-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.12 Windows x86-64

dftd3-1.2.0-cp312-cp312-musllinux_1_2_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

dftd3-1.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

dftd3-1.2.0-cp312-cp312-macosx_14_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

dftd3-1.2.0-cp312-cp312-macosx_12_0_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.12 macOS 12.0+ x86-64

dftd3-1.2.0-cp311-cp311-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

dftd3-1.2.0-cp311-cp311-musllinux_1_2_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

dftd3-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

dftd3-1.2.0-cp311-cp311-macosx_14_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

dftd3-1.2.0-cp311-cp311-macosx_12_0_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 macOS 12.0+ x86-64

dftd3-1.2.0-cp310-cp310-musllinux_1_2_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

dftd3-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

dftd3-1.2.0-cp310-cp310-macosx_14_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

dftd3-1.2.0-cp310-cp310-macosx_12_0_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 macOS 12.0+ x86-64

dftd3-1.2.0-cp39-cp39-musllinux_1_2_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

dftd3-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

dftd3-1.2.0-cp39-cp39-macosx_14_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 14.0+ ARM64

dftd3-1.2.0-cp39-cp39-macosx_12_0_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 macOS 12.0+ x86-64

dftd3-1.2.0-cp38-cp38-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

dftd3-1.2.0-cp38-cp38-musllinux_1_2_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

dftd3-1.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

dftd3-1.2.0-cp38-cp38-macosx_12_0_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 macOS 12.0+ x86-64

File details

Details for the file dftd3-1.2.0.tar.gz.

File metadata

  • Download URL: dftd3-1.2.0.tar.gz
  • Upload date:
  • Size: 667.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for dftd3-1.2.0.tar.gz
Algorithm Hash digest
SHA256 2d6a1453e20bb8617af1ff845407c1c8749d5f9dce2f81cbab4eb3612ba47243
MD5 255db71b2c4ad1e810ff8123d3efb5ad
BLAKE2b-256 3b59dc093e4b1d7f37d8ca5ca8ed2942b7e0cbc6bd685865e52f03da3770885b

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 de2d06d7cb2f25363b6379cebdbc23a48ed2f14186d68e3d749d3838cf150e6a
MD5 40ecef13e91ccb5d6231fe655d9108b2
BLAKE2b-256 19ec47a158a553f6e2985d83d4d5d7f4c3a4770e65cb9130d5371c3a115771a0

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-pp310-pypy310_pp73-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-pp310-pypy310_pp73-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 8b9a9e4cffcd8d893c36e74fe8e20d8e0dabe78b413bbd346ed5325b4e3be332
MD5 de92e754d4fafac76ced3a1ea94ce5c9
BLAKE2b-256 b61dc945a52ce79ba8a014b36533835dc6332a74ac696215b9d94dad21b9e37d

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-pp310-pypy310_pp73-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-pp310-pypy310_pp73-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 d8912189208552b176cd7748b404fa21955bad8e1aa9efdaa7999b9090151dd1
MD5 39f604bd8c49f0444f643e79d038a534
BLAKE2b-256 f9510510df7b0689c2bcdfd6ac467dbff58959bd17ac1633a68f931dd1567e7a

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e14ad05183379c87d5790c265760d0eda5ebbd539dbca2e744d5b373a6f123c4
MD5 28ca226ebe926a4e089700ead146e9c6
BLAKE2b-256 082b44a1b0289a4aa0d49ccab668243bf56140a57b38247f722b07e562c693ad

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-pp39-pypy39_pp73-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-pp39-pypy39_pp73-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 7d4f21f30e3f4a0fa6f0d5d6e7209b909735ab18e78341f24476b5becee4c5c0
MD5 82af6133dc46210237aed20251f42e3d
BLAKE2b-256 b1dd273003bb3288e0da97ec7e1351b1ab834adafed886bc576af6fd329d562c

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-pp39-pypy39_pp73-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-pp39-pypy39_pp73-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 7c5d47260b183f4ee0e520f087c7f9e5ceb9a87588e5280cf7a9ec70ae1492c9
MD5 33a9d0549591b9831529340c67afe0aa
BLAKE2b-256 fe90ec009d6d9fcd6ac1908cd1eee96a20f43699772cc30d6daffef710835abb

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 ff53d2f00714577c2708b2a8646e05ab893158aceebf4e2269bcefbadf53925f
MD5 b06ad2284d74e5a93d5bd1a27c59d779
BLAKE2b-256 909c17de25d934ab6f29fb89464de162dfed05f15226e8b840a1ddc8bd80f616

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a64797222e9d36c447ee07b36fb94df0a3159269e83ed5ddfb660bc954d575fa
MD5 cf98709b14859d8c2cca3d372cb80789
BLAKE2b-256 b280efa9f4e58253b08139a9afd31dc0361489fbe125d548fd8dad963787a01b

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-pp38-pypy38_pp73-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-pp38-pypy38_pp73-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 dac3e12f463b34b071c221062955f38790edce4be4e5230432f3fcea950faf6a
MD5 3b3fe8b7475b75cc580245fd9d2659b1
BLAKE2b-256 e2f4b6933627b7ad98750741f91ad51154b164fae1f2d6e5556b5120f06cb886

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: dftd3-1.2.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for dftd3-1.2.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 b3f2105969fe30ad14046382abc4156e9b4c2ed169fc9659d3092b237f685360
MD5 c4d146b54c5b108a6dc51c1ba5ac6755
BLAKE2b-256 74754a3fe9fcc9f47327320b822d7a4f01e00b3581ed6c95ca325b107c7d7fd5

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 61293c0fe684761dc9a169e9dbf10ca81e29c67a590170e48e05b04dfb3a8066
MD5 a07f197a16fa62640ee15cdf9a6cc466
BLAKE2b-256 1c0a53f99131d8e697864dbc2e97dd65e491215c374fc1a4ffd4050914fc30b7

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1c2d922e94e68bddaefe424e5e3c797ed8a072a778e27721f0f8589968cf5833
MD5 bd12bab0222da887ff444ac659e1c9e9
BLAKE2b-256 66c22aa92bdfec3c3597a0c8203d99f625926f7d67156157c397c4009acf13a8

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 9b23f55fd34e8590e12f12e6f4ac3b930aa5b9a88ac3f7c8f951b8eebd573538
MD5 63ab1873c2713c56724932bb7e110388
BLAKE2b-256 7655ab4c21fc1716ad2dbcc5a5d83d7914030eca6fb0c549829deb3acd4c1e9b

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-cp313-cp313-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-cp313-cp313-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 c97c9218e38c2bf2e44935e045c6ff792e56a99efb6621993bc41e561eb1c43d
MD5 a3a3bde341845209a0c9fe069ec51984
BLAKE2b-256 4ad4fe7e934acdef75396d76fc630734fa43992dd3edf4a6e170b99b5e919566

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: dftd3-1.2.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for dftd3-1.2.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 1b3b7efeaa29432f3a9249083d37e3bb7886c12df8b337a2875635a0f1365812
MD5 d493fc634d8058fbe07a6e07772f9acd
BLAKE2b-256 d89e0173b4b047d26af73cd4f51448389d8471346467f0135350ca381719f646

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c0ba756728e3e41f3261dfa7f25a3f57f88fdf61b28b8e7f8fbc7ff0acdc76fb
MD5 5a9f6159523fff936232c1fae2e83a18
BLAKE2b-256 bb96c4680c1939d56c887d8043edbfe2290b9f01b06c71df314dde426dc2ff50

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2efc0e96acfe6f2095deb919b57a8c662d1e03b7206a73d929f792e8ad7ad789
MD5 8f45c3a3d26d0049ddd5837b75bf7d0f
BLAKE2b-256 346b23a86e4a2e86d8bb9799dafb69cf4508ea86153354344bb615abc1017421

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 c9b3574e5e7dda0e8d3164e43c4ab0233a90aabb148ed0ff12439a140fbb50ae
MD5 dac4fb5c5ba1eb8674aebe54b1b1fd55
BLAKE2b-256 4585003335fcd5f9e89b8fe6c37e4d435c29f1c7cffe99cb3b41e1e05bb9af9e

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-cp312-cp312-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-cp312-cp312-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 94c59ae4c3aa5c31edf80e53eb12e421d2229dcbe4301faff68f557ef7c11ed8
MD5 28cff955ccaed434bf5d5761d33bd1c0
BLAKE2b-256 d969bcb7a8f22d34b7775dcbad84208a866d49643ae9f04a4c0d9ec6ed749eb3

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: dftd3-1.2.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for dftd3-1.2.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d645a82f67b132ea444d738fef0749accea452c0165febf6a8c77681de7144ad
MD5 7b06a7b2160d26054615cadf7ce9f62c
BLAKE2b-256 4546501d7bd4a630904839e311fced6920531b2251c3d6b5fd70054148ba5ffa

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c2d02b0bb0e50f93882da6103a0c3ec97bb11ae29b94b91d2da0e6ac1c74aa79
MD5 e4a0b4ec631edd0ec3f7289a307336c3
BLAKE2b-256 54ba56863ed2992b16c5654ba0121d52ee4c6ebfe2846cb97bf391a336e099cf

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d8e3bfc1332479bd52555ebbd54cce4a83da43bf556e83d83c0c6f939c48ffef
MD5 d03a4b9842f96b1ed2826402005deed2
BLAKE2b-256 182e3f9ea5df6e7eabd67653b6541b1e1dfa04cb558e888ab3a9ef144582d98f

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 d6ea39523064cc365c7c90807b0ce5610ec851f73e3010cd0b11281e01a3bfe2
MD5 3430d29620202ea3dfbf695642e2bf6d
BLAKE2b-256 103beee200c2f6023831758ce026058ffcb51d3a17801e0ece9dab7fdbbc2939

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-cp311-cp311-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-cp311-cp311-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 cc7317d28609697a982fdb8e0e847123a082dc9e3a371317f112a54c14bb2ae7
MD5 91514c9eaaa460d018b3a25dccafecd3
BLAKE2b-256 e9d23d972dce9e2f3d22b65047f2031d4190cdc7735e016f69624f45fceb25e9

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d3fe9f7313d296fd1197583b8b82be82caf4d25648b6ffb00f742ea36fa48d43
MD5 7a85770955948650a947b8a4820c0677
BLAKE2b-256 ed4f2a3c2daff2af1b196d54b64821c1bb26a0054fb6bdc4039210fc80eed46a

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d6761c5bc62aa963ee48f85ede12817bc8a16dcb09ad3e23251e10f3d5b6088b
MD5 a0611728e269901bfbbdf8e2fd32ef5c
BLAKE2b-256 8b2b911056b2a88e7b3fbe028695fa6a86fe57171775032c40420678a3a3e90c

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 93b55a1ff267f7b3cb13a8051eb244817770b413e03e8b127fc94819c3475add
MD5 68793ad20d88c907c156e3e5063641b8
BLAKE2b-256 5ca4e89a9d1f50c69b8dff8ff28f1db18e9af952778abb6a555518cc92e8f690

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-cp310-cp310-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-cp310-cp310-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 2c009a33aa029c6f03afcc636d3c79ffa14bec89c13f727ac8a3392441518199
MD5 59c2a823a4b4896e225fcbdadfbeb650
BLAKE2b-256 20542e2ff0e0d04baa87a7071834ccba0b74bcf331ec0a87d6d9729811d471ae

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ddc5f1a6e9175103b3484feb258b751daeeb8145d2ea1b375028eaeca87c1c96
MD5 d01f9d5b9f042ba53157e48094f86584
BLAKE2b-256 0a3914b0cb5ada7e6c9fc7dad372c2383cfae594cc4a630af683c7e15f55e6f5

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6790b5fd97c2100ab8c9b77eda262154aabc7308b0b737448a94de34e0ea58d7
MD5 91330bd8b65635ecc0ff78f49f42d53c
BLAKE2b-256 85430262b1b7959e7ad14172ef65c4edb1c15ab8de371a9cdb0f1fec8b2b64e2

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-cp39-cp39-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-cp39-cp39-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 1cd61acd67cf78849ab88789e15b7c3a0998721b8b81457bc2bed9b52863bf3f
MD5 9dc04aef827c698b61a1970b221b99b2
BLAKE2b-256 68b8a764058575b9283f11ce363b23c3619850d8ff9841ed66cdbf9c988d6f61

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-cp39-cp39-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-cp39-cp39-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 37b6b6d05dd7c3f7f982a9e83c9ce33604b684428302fd79707f73321a5cf030
MD5 6a2bc019f742f5868bbbdf57b28b9dd5
BLAKE2b-256 1fea6bc8865fd78075c5586de3e89361465e09154c02d3ca9a0955b5bc26e875

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: dftd3-1.2.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for dftd3-1.2.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b52ee4fa13058fc9ea4b36fe1d427f0018bb84f337c838505e24813643e70049
MD5 0ff722e7cbea2973edd5187b77814055
BLAKE2b-256 e778de14b4ef1f406290409e2d71eaa0ab07d103d506f71266dad59f30f74ec4

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 006153d7c7c162655be2b6126b03b77cd7b72aa948388189eb0d9144ccd4d84c
MD5 4c9c4c8ada49ec329e418f3816212900
BLAKE2b-256 4cb1d91da496955a4e12853d198a017d094b3c568bbfb6b0f3b78a1cefff5cac

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 12647e58052848dc72765a011e99c6f69e63d6ea4226b15bc83cc72f6da2402f
MD5 16b9dd877ffc1cd895351c405c83f024
BLAKE2b-256 4dded27e6bfde11e63d3e241f2b07d5bb8dbc0bdab43f79c0ec9754095138f65

See more details on using hashes here.

File details

Details for the file dftd3-1.2.0-cp38-cp38-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.0-cp38-cp38-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 9e3d2e0434dbe3f319fac48df816fddb51946b87fc4f38f6f44d7d8524e74eda
MD5 ffc15e1fe522f86fd324d06d529466e6
BLAKE2b-256 2203eb91371e1d3266affa7b6f7ad110a6a935289ced23f5b25a6d57254d0aef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page