Skip to main content

Python wrapper and metaschema for datadictionary.

Project description

dictionaryutils

python wrapper and metaschema for datadictionary. It can be used to:

  • load a local dictionary to a python object.
  • dump schemas to a file that can be uploaded to s3 as an artifact.
  • load schema file from an url to a python object that can be used by services

Test for dictionary validity with Docker

Say you have a dictionary you are building locally and you want to see if it will pass the tests.

You can add a simple alias to your .bash_profile to enable a quick test command:

testdict() { docker run --rm -v $(pwd):/dictionary quay.io/cdis/dictionaryutils:master; }

Then from the directory containing the gdcdictionary directory run testdict.

Generate simulated data with Docker

If you wish to generate fake simulated data you can also do that with dictionaryutils and the data-simulator.

simdata() { docker run --rm -v $(pwd):/dictionary -v $(pwd)/simdata:/simdata quay.io/cdis/dictionaryutils:master; /bin/bash -c "cd /dictionary/dictionaryutils; bash dockerrun.bash; cd /dictionary/dictionaryutils; poetry run python bin/simulate_data.py --path /dictionary/simdata $*; export SUCCESS=$?; cd /dictionary; rm -rf build dictionaryutils dist gdcdictionary.egg-info; chmod -R a+rwX /simdata; exit $SUCCESS "; }

Then from the directory containing the gdcdictionary directory run simdata and a folder will be created called simdata with the results of the simulator run. You can also pass in additional arguments to the data-simulator script such as simdata --max_samples 10.

The --max_samples argument will define a default number of nodes to simulate, but you can override it using the --node_num_instances_file argument. For example, if you create the following instances.json:

{
        "case": 100,
        "demographic": 100
}

Then run the following:

docker run --rm -v $(pwd):/dictionary -v $(pwd)/simdata:/simdata quay.io/cdis/dictionaryutils:master /bin/bash -c "cd /dictionaryutils; bash dockerrun.bash; cd /dictionary/dictionaryutils; poetry run python bin/simulate_data.py --path /simdata/ --program workshop --project project1 --max_samples 10 --node_num_instances_file /dictionary/instances.json; export SUCCESS=$?; rm -rf build dictionaryutils dist gdcdictionary.egg-info; chmod -R a+rwX /simdata; exit $SUCCESS";

Then you'll get 100 each of case and demographic nodes and 10 each of everything else. Note that the above example also defines program and project names.

You can also run the simulator for an arbitrary json url with the --url parameter. The alias can be simplified to skip the set up of the parent directory virtual env (ie, skip the docker_run.bash):

simdataurl() { docker run --rm -v $(pwd):/dictionary -v $(pwd)/simdata:/simdata quay.io/cdis/dictionaryutils:master /bin/bash -c "python /dictionaryutils/bin/simulate_data.py simulate --path /simdata/ $*; chmod -R a+rwX /simdata"; }

Then run simdataurl --url https://datacommons.example.com/schema.json.

Using a local build of the Docker image

It is possible to use a local build of the dictionaryutils Docker image instead of the master branch stored in quay.

From a local copy of the dictionaryutils repo, build and tag a Docker image, for example

docker build -t dictionaryutils-mytag .

Then use this image in any of the aliases and commands mentioned above by replacing quay.io/cdis/dictionaryutils:master with dictionaryutils-mytag.

Use dictionaryutils to load a dictionary

from dictionaryutils import DataDictionary

dict_fetch_from_remote = DataDictionary(url=URL_FOR_THE_JSON)

dict_loaded_locally = DataDictionary(root_dir=PATH_TO_SCHEMA_DIR)

Use dictionaryutils to dump a dictionary

import json
from dictionaryutils import dump_schemas_from_dir

with open('dump.json', 'w') as f:
    json.dump(dump_schemas_from_dir('../datadictionary/gdcdictionary/schemas/'), f)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dictionaryutils-3.5.0.tar.gz (14.4 kB view details)

Uploaded Source

Built Distribution

dictionaryutils-3.5.0-py3-none-any.whl (16.7 kB view details)

Uploaded Python 3

File details

Details for the file dictionaryutils-3.5.0.tar.gz.

File metadata

  • Download URL: dictionaryutils-3.5.0.tar.gz
  • Upload date:
  • Size: 14.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/2.1.2 CPython/3.9.22 Linux/6.8.0-1021-azure

File hashes

Hashes for dictionaryutils-3.5.0.tar.gz
Algorithm Hash digest
SHA256 680118a8fe24f5f512169c85c99334b9a0d9e830d73a70db9b3f55903cab11e6
MD5 58b4d1341867cb7c03f0f886b936d088
BLAKE2b-256 9dcb856738ea83e536358a34873e3cd5bd41b03e4182b368350151dbd57b7145

See more details on using hashes here.

File details

Details for the file dictionaryutils-3.5.0-py3-none-any.whl.

File metadata

  • Download URL: dictionaryutils-3.5.0-py3-none-any.whl
  • Upload date:
  • Size: 16.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/2.1.2 CPython/3.9.22 Linux/6.8.0-1021-azure

File hashes

Hashes for dictionaryutils-3.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 91bbf296dd8141a844d622a349a648cf0e002f816ae635ea0edf6bd627849acb
MD5 039a3220c51f552bde7bd6e721bc6268
BLAKE2b-256 3ccf0767cc2009f17a5c7aaad584d0da92b5f01a943e0c9be3bb2456cf8fd310

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page