Library to query python dicts
Project description
DictQuery
Library to query python dicts
Several syntax examples:
"age >= 12"
"`user.name` == 'cyberlis'"
"`user.email` MATCH /\w+@\w+\.com/ AND age != 11"
"`user.friends.age` > 12 AND `user.friends.name` LIKE 'Ra*ond'"
"email LIKE 'mariondelgado?bleendot?com'"
"eyeColor IN ['blue', 'green', 'black']"
"isActive AND (gender == 'female' OR age == 27)"
"latitude != longitude"
Supported data types
type | example |
---|---|
KEY | name, age, `friends.name.firstname`, `friends.age` |
NUMBER | 42, -12, 34.7 |
STRING | 'hello', "hellow" |
BOOLEAN | true, false |
NONE | none, null |
NOW | utc current datetime |
REGEXP | /\d+\d+\w+/ |
ARRAY | list of any items and any types |
Keys
Key literals must start with a letter or an underscore, such as:
_underscore
underscore_
The remainder of your variable name may consist of letters, numbers and underscores.
password1
n00b
un_der_scores
If you need a key with separator character (.
or /
) because you use nested keys, or need spaces or other punctuation characters in key, use back-ticks (``)
DictQuery supports nested dicts splited by dot .
or any separator specified in key_separator
param. Default key_separator='.'
>>> import dictquery as dq
>>> dq.match(data, "`friends.age` <= 26")
True
>>> compiled = dq.compile("`friends/age` <= 26", key_separator='/')
>>> compiled.match(data)
True
if you don't need nested keys parsing and want get keys as is or if your keys contain separator char, you can disable nested keys behaviour by setting use_nested_keys=False
>>> import dictquery as dq
>>> dq.match(data, "`user.address`")
False
>>> dq.match(data, "age")
True
>>> compiled = dq.compile("`user.address`", use_nested_keys=False)
>>> compiled.match(data)
True
In query you can use dict keys 'as is' without any binary operation. DictQuery will get value by the key and evaluate it to bool
>>> import dictquery as dq
>>> dq.match(data, "isActive")
False
>>> dq.match(data, "isActive == false")
True
if key is not found by default this situation evaluates to boolean False
(no exception raised).
You can set raise_keyerror=True
to raise keyerror if key would not be found.
>>> import dictquery as dq
>>> dq.match(data, "favoriteFruit")
False
>>> compiled = dq.compile("`favoriteFruit`", raise_keyerror=True)
>>> compiled.match(data)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File ".../dictquery/dictquery/visitors.py", line 41, in match
return self.evaluate(data)
File ".../dictquery/dictquery/visitors.py", line 35, in evaluate
result = bool(self.ast.accept(self))
File ".../dictquery/dictquery/parsers.py", line 80, in accept
return visitor.visit_key(self)
File ".../dictquery/dictquery/visitors.py", line 84, in visit_key
values=self._get_dict_value(expr.value),
File ".../dictquery/dictquery/visitors.py", line 30, in _get_dict_value
self.key_separator, self.raise_keyerror)
File ".../dictquery/dictquery/datavalue.py", line 112, in query_value
raise DQKeyError("Key '{}' not found".format(data_key))
dictquery.exceptions.DQKeyError: "Key 'favoriteFruit' not found"
Comparisons
Operation | Meaning |
---|---|
< | strictly less than |
<= | less than or equal |
> | strictly greater than |
>= | greater than or equal |
== | equal |
!= | not equal |
>>> import dictquery as dq
>>> dq.match(data, "age == 26")
True
>>> dq.match(data, "latitude > 12")
True
>>> dq.match(data, "longitude < 30")
True
>>> dq.match(data, "`friends.age` <= 26")
True
>>> dq.match(data, "longitude >= -130")
True
>>> dq.match(data, "id != 0")
True
>>> dq.match(data, "gender == 'male'")
False
String comparisons and matching
String literals are written in a variety of ways:
- Single quotes: 'allows embedded "double" quotes'
- Double quotes: "allows embedded 'single' quotes".
Operation | Meaning |
---|---|
MATCH | regexp matching |
LIKE | glob like matching |
IN | dict item substring in string |
CONTAINS | dict item substring contains string |
< , <= , > , >= , == , != works same way with strings as python
>>> import dictquery as dq
>>> dq.match(data, "eyeColor == 'green'")
True
>>> dq.match(data, "`name.firstname` != 'Ratliff'")
True
>>> dq.match(data, "eyeColor IN 'string with green color'")
True
>>> dq.match(data, "email CONTAINS '.com'")
True
>>> dq.match(data, r"email MATCH /\w+@\w+\.\w+/")
True
>>> dq.match(data, r"email LIKE 'mariondelgado@*'")
True
>>> dq.match(data, r"email LIKE 'mariondelgado?bleendot?com'")
True
By default all string related operations are case sensitive. To change this behaviour you have to create instance of DictQuery with case_sensitive=False
>>> import dictquery as dq
>>> dq.match(data, "`name.firstname` == 'marion'")
False
>>> compiled = dq.compile("`name.firstname` == 'marion'", case_sensitive=False)
>>> compiled.match(data)
True
Array comparisons
Operation | Meaning |
---|---|
IN | dict item in array |
CONTAINS | dict item contains matching item |
>>> import dictquery as dq
>>> dq.match(data, "tags CONTAINS 'dolor'")
True
>>> dq.match(data, "eyeColor IN ['blue', 'green', 'black']")
True
Key presence in dict
CONTAINS
can be used with dict items to check if key in dict
>>> import dictquery as dq
>>> dq.match(data, "name CONTAINS 'firstname'")
True
>>> dq.match(data, "name CONTAINS 'thirdname'")
False
Datetime comparisons with NOW
NOW
returns current utc datetime
dict item can be compared with NOW
using standard operations (< , <= , > , >= , == , !=)
>>> import dictquery as dq
>>> dq.match(data, "registered < NOW")
True
>>> dq.match(data, "registered != NOW")
True
Logical operators
Operator | Meaning | Example |
---|---|---|
and | True if both the operands are true | x and y |
or | True if either of the operands is true | x or y |
not | True if operand is false (complements the operand) | not x |
>>> import dictquery as dq
>>> dq.match(data, "isActive AND gender == 'female'")
False
>>> dq.match(data, "isActive OR gender == 'female'")
True
>>> dq.match(data, "NOT isActive AND gender == 'female'")
True
You can use parentheses to group statements or change evaluation order
>>> import dictquery as dq
>>> dq.match(data, "isActive AND gender == 'female' OR age == 27")
True
>>> dq.match(data, "isActive AND (gender == 'female' OR age == 27)")
False
Data for examples above:
from datetime import datetime
data = {
"_id": 10,
"isActive": False,
"age": 27,
"eyeColor": "green",
"name": {
"firstname": "Marion",
"secondname": "Delgado",
},
"gender": "female",
"email": "mariondelgado@bleendot.com",
"registered": datetime.strptime("2015-03-29T06:07:58", "%Y-%m-%dT%H:%M:%S"),
"latitude": 74.785608,
"longitude": -112.366088,
"tags": [
"voluptate",
"ex",
"dolor",
"aute"
],
"user.address": "155 Village Road, Enetai, Puerto Rico, 2634",
"friends": [
{
"id": 0,
"name": {
"firstname": "Ratliff",
"secondname": "Becker",
},
"age": 27,
"eyeColor": "green"
},
{
"id": 1,
"name": {
"firstname": "Raymond",
"secondname": "Albert",
},
"age": 19,
"eyeColor": "brown"
},
{
"id": 2,
"name": {
"firstname": "Mavis",
"secondname": "Sheppard",
},
"age": 34,
"eyeColor": "blue"
}
]
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for dictquery-0.5.0-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 868f5bd93fd59af990c9452d2b7bde1048d1a7aa2b675f163cb1f74c71011dea |
|
MD5 | c4c00855ba87534b80ca18366951fe5a |
|
BLAKE2b-256 | c6807fcdf5c5b19bfcaf4291c5d593d55b6a6d47f7dbc7a9bee90d25fb19a041 |