Skip to main content

Speech signal processing modules for machine learning

Project description

diffsptk

diffsptk is a differentiable version of SPTK based on the PyTorch framework.

Manual Downloads ClickPy Python Version PyTorch Version PyPI Version Codecov License GitHub Actions Ruff

Requirements

  • Python 3.10+
  • PyTorch 2.3.1+

Documentation

  • See this page for the reference manual.
  • Our paper is available on the ISCA Archive.

Installation

The latest stable release can be installed through PyPI by running

pip install diffsptk

The development release can be installed from the master branch:

pip install git+https://github.com/sp-nitech/diffsptk.git@master

Examples

Running on a GPU

import diffsptk

stft_params = {"frame_length": 400, "frame_period": 80, "fft_length": 512}

# Read waveform.
x, sr = diffsptk.read("assets/data.wav", device="cuda")

# Compute spectrogram using a nn.Module class.
X1 = diffsptk.STFT(**stft_params, device="cuda")(x)

# Compute spectrogram using a functional method.
X2 = diffsptk.functional.stft(x, **stft_params)

print(X1.allclose(X2))

Mel-cepstral analysis and synthesis

import diffsptk

fl = 400     # Frame length.
fp = 80      # Frame period.
n_fft = 512  # FFT length.
M = 24       # Mel-cepstrum dimensions.

# Read waveform.
x, sr = diffsptk.read("assets/data.wav")

# Compute STFT amplitude of x.
stft = diffsptk.STFT(frame_length=fl, frame_period=fp, fft_length=n_fft)
X = stft(x)

# Estimate mel-cepstrum of x.
alpha = diffsptk.get_alpha(sr)
mcep = diffsptk.MelCepstralAnalysis(
    fft_length=n_fft,
    cep_order=M,
    alpha=alpha,
    n_iter=10,
)
mc = mcep(X)

# Reconstruct x.
mlsa = diffsptk.MLSA(filter_order=M, frame_period=fp, alpha=alpha, taylor_order=20)
x_hat = mlsa(mlsa(x, -mc), mc)

# Write reconstructed waveform.
diffsptk.write("reconst.wav", x_hat, sr)

# Compute error.
error = (x_hat - x).abs().sum()
print(error)

# Extract pitch of x.
pitch = diffsptk.Pitch(
    frame_period=fp,
    sample_rate=sr,
    f_min=80,
    f_max=180,
    voicing_threshold=0.4,
    out_format="pitch",
)
p = pitch(x)

# Generate excitation signal.
excite = diffsptk.ExcitationGeneration(frame_period=fp)
e = excite(p)
n = diffsptk.nrand(x.size(0) - 1)

# Synthesize waveform.
x_voiced = mlsa(e, mc)
x_unvoiced = mlsa(n, mc)

# Output analysis-synthesis result.
diffsptk.write("voiced.wav", x_voiced, sr)
diffsptk.write("unvoiced.wav", x_unvoiced, sr)

WORLD analysis and synthesis

import diffsptk

fp = 80       # Frame period.
n_fft = 1024  # FFT length.

# Read waveform.
x, sr = diffsptk.read("assets/data.wav")

# Extract F0 of x, or prepare well-estimated F0.
pitch = diffsptk.Pitch(
    frame_period=fp,
    sample_rate=sr,
    f_min=80,
    f_max=180,
    voicing_threshold=0.4,
    out_format="f0",
)
f0 = pitch(x)

# Extract aperiodicity of x by D4C.
ap = diffsptk.Aperiodicity(
    frame_period=fp,
    sample_rate=sr,
    fft_length=n_fft,
    algorithm="d4c",
    out_format="a",
)
A = ap(x, f0)

# Extract spectral envelope of x by CheapTrick.
pitch_spec = diffsptk.PitchAdaptiveSpectralAnalysis(
    frame_period=fp,
    sample_rate=sr,
    fft_length=n_fft,
    algorithm="cheap-trick",
    out_format="power",
)
S = pitch_spec(x, f0)

# Reconstruct x.
world_synth = diffsptk.WorldSynthesis(
    frame_period=fp,
    sample_rate=sr,
    fft_length=n_fft,
)
x_hat = world_synth(f0, A, S)

# Write reconstructed waveform.
diffsptk.write("reconst.wav", x_hat, sr)

# Compute error.
error = (x_hat - x).abs().sum()
print(error)

LPC analysis and synthesis

import diffsptk

fl = 400  # Frame length.
fp = 80   # Frame period.
M = 24    # LPC dimensions.

# Read waveform.
x, sr = diffsptk.read("assets/data.wav")

# Estimate LPC of x.
frame = diffsptk.Frame(frame_length=fl, frame_period=fp)
window = diffsptk.Window(in_length=fl)
lpc = diffsptk.LPC(frame_length=fl, lpc_order=M, eps=1e-5)
a = lpc(window(frame(x)))

# Convert to inverse filter coefficients.
norm0 = diffsptk.AllPoleToAllZeroDigitalFilterCoefficients(filter_order=M)
b = norm0(a)

# Reconstruct x.
zerodf = diffsptk.AllZeroDigitalFilter(filter_order=M, frame_period=fp)
poledf = diffsptk.AllPoleDigitalFilter(filter_order=M, frame_period=fp)
x_hat = poledf(zerodf(x, b), a)

# Write reconstructed waveform.
diffsptk.write("reconst.wav", x_hat, sr)

# Compute error.
error = (x_hat - x).abs().sum()
print(error)

Mel-spectrogram analysis and synthesis

import diffsptk

fl = 400         # Frame length.
fp = 80          # Frame period.
n_fft = 512      # FFT length.
n_channel = 128  # Number of channels.

# Read waveform.
x, sr = diffsptk.read("assets/data.wav")

# Compute STFT amplitude of x.
stft = diffsptk.STFT(frame_length=fl, frame_period=fp, fft_length=n_fft)
X = stft(x)

# Extract log mel-spectrogram.
fbank = diffsptk.FBANK(
    fft_length=n_fft,
    n_channel=n_channel,
    sample_rate=sr,
)
Y = fbank(X)

# Reconstruct linear spectrogram.
ifbank = diffsptk.IFBANK(
    n_channel=n_channel,
    fft_length=n_fft,
    sample_rate=sr,
)
X_hat = ifbank(Y)

# Reconstruct x.
griffin = diffsptk.GriffinLim(
    frame_length=fl,
    frame_period=fp,
    fft_length=n_fft,
)
x_hat = griffin(X_hat, out_length=x.size(0))

# Write reconstructed waveform.
diffsptk.write("reconst.wav", x_hat, sr)

# Compute error.
error = (x_hat - x).abs().sum()
print(error)

Subband decomposition

import diffsptk

K = 4   # Number of subbands.
M = 40  # Order of filter.

# Read waveform.
x, sr = diffsptk.read("assets/data.wav")

# Decompose x.
pqmf = diffsptk.PQMF(K, M)
decimate = diffsptk.Decimation(K)
y = decimate(pqmf(x))

# Reconstruct x.
interpolate = diffsptk.Interpolation(K)
ipqmf = diffsptk.IPQMF(K, M)
x_hat = ipqmf(interpolate(K * y)).reshape(-1)

# Write reconstructed waveform.
diffsptk.write("reconst.wav", x_hat, sr)

# Compute error.
error = (x_hat - x).abs().sum()
print(error)

Gammatone filter bank analysis and synthesis

import diffsptk

# Read waveform.
x, sr = diffsptk.read("assets/data.wav")

# Decompose x.
gammatone = diffsptk.GammatoneFilterBankAnalysis(sr)
y = gammatone(x)

# Reconstruct x.
igammatone = diffsptk.GammatoneFilterBankSynthesis(sr)
x_hat = igammatone(y).reshape(-1)

# Write reconstructed waveform.
diffsptk.write("reconst.wav", x_hat, sr)

# Compute error.
error = (x_hat - x).abs().sum()
print(error)

Fractional octave band analysis and synthesis

import diffsptk

# Read waveform.
x, sr = diffsptk.read("assets/data.wav")

# Decompose x.
oband = diffsptk.FractionalOctaveBandAnalysis(sr)
y = oband(x)

# Reconstruct x.
x_hat = y.sum(1).reshape(-1)

# Write reconstructed waveform.
diffsptk.write("reconst.wav", x_hat, sr)

# Compute error.
error = (x_hat - x).abs().sum()
print(error)

Constant-Q transform

import diffsptk
import librosa  # This is to get sample audio.

fp = 128  # Frame period.
K = 252   # Number of CQ-bins.
B = 36    # Number of bins per octave.

# Read waveform.
x, sr = diffsptk.read(librosa.ex("trumpet"))

# Transform x.
cqt = diffsptk.CQT(fp, sr, n_bin=K, n_bin_per_octave=B)
c = cqt(x)

# Reconstruct x.
icqt = diffsptk.ICQT(fp, sr, n_bin=K, n_bin_per_octave=B)
x_hat = icqt(c, out_length=x.size(0))

# Write reconstructed waveform.
diffsptk.write("reconst.wav", x_hat, sr)

# Compute error.
error = (x_hat - x).abs().sum()
print(error)

Modified discrete cosine transform

import diffsptk

fl = 512  # Frame length.

# Read waveform.
x, sr = diffsptk.read("assets/data.wav")

# Transform x.
mdct = diffsptk.MDCT(fl)
c = mdct(x)

# Reconstruct x.
imdct = diffsptk.IMDCT(fl)
x_hat = imdct(c, out_length=x.size(0))

# Write reconstructed waveform.
diffsptk.write("reconst.wav", x_hat, sr)

# Compute error.
error = (x_hat - x).abs().sum()
print(error)

Vector quantization

import diffsptk

K = 2  # Codebook size.
M = 4  # Order of vector.

# Prepare input.
x = diffsptk.nrand(M)

# Quantize x.
vq = diffsptk.VectorQuantization(M, K)
x_hat, indices, commitment_loss = vq(x)

# Compute error.
error = (x_hat - x).abs().sum()
print(error)

License

This software is released under the Apache License 2.0.

Citation

@InProceedings{sp-nitech2023sptk,
  author = {Takenori Yoshimura and Takato Fujimoto and Keiichiro Oura and Keiichi Tokuda},
  title = {{SPTK4}: An open-source software toolkit for speech signal processing},
  booktitle = {12th ISCA Speech Synthesis Workshop (SSW 2023)},
  pages = {211--217},
  year = {2023},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

diffsptk-3.3.0.tar.gz (151.3 kB view details)

Uploaded Source

Built Distribution

diffsptk-3.3.0-py3-none-any.whl (298.1 kB view details)

Uploaded Python 3

File details

Details for the file diffsptk-3.3.0.tar.gz.

File metadata

  • Download URL: diffsptk-3.3.0.tar.gz
  • Upload date:
  • Size: 151.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.12

File hashes

Hashes for diffsptk-3.3.0.tar.gz
Algorithm Hash digest
SHA256 47cc64e5740948cdaf70e6fa72a312e732abe5f978cae350b5c4c3700618cf4b
MD5 b9c290ce424358f2b7aef7bff66de205
BLAKE2b-256 1ff3b1ee9431d26eabd4fa9daa39c307a0a069728dc87f9daf71ec0113aca43a

See more details on using hashes here.

File details

Details for the file diffsptk-3.3.0-py3-none-any.whl.

File metadata

  • Download URL: diffsptk-3.3.0-py3-none-any.whl
  • Upload date:
  • Size: 298.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.12

File hashes

Hashes for diffsptk-3.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 a5f9c369f3b2645cc0390b8b0c10a0ee0882e44b16abba816e01909e5db45aa4
MD5 e30cd1722734ba39e5696fff88e46896
BLAKE2b-256 ec666ddf4391c6da8a4751c8ac3edcdda6f8dfcae42f68990637fb0e9a0637c4

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page