Skip to main content

dingodb is dingodb sdk

Project description

python-dingodb

The DingoDB python sdk

First, you have prepared the DingoDB environment, see the docs at https://github.com/dingodb/dingo-deploy.git

For more information about DingoDB, see the docs at https://dingodb.readthedocs.io/en/latest/

How to Contribute

1. Compile

pip install -r requirements.txt
git submodule update --init --recursive

2. Release

Usage

Installation

  1. Install from pypi
pip3 install dingodb
  1. Install from Source
pip install git+https://github.com/dingodb/pydingo.git

Basic API

Creating an index

The following example creates an index without a metadata configuration.

>>> import dingodb
>>> dingo_client = dingodb.DingoDB("user", "password", ["172.20.3.20:13000"])
>>> dingo_client.create_index("testdingo", 6, index_type="flat")
True

dingodb provides flexible indexing parameters.

>>> help(dingo_client.create_index)
create_index(index_name, dimension, index_type='hnsw', metric_type='euclidean', replicas=3, index_config=None, metadata_config=None, partition_rule=None, auto_id=True)

Get index

The following example returns all indexes in your schema.

>>> dingo_client.get_index()
['testdingo']

Get index info

The following example returns the info in specified index.

>>> dingo_client.describe_index_info("testdingo")
{'name': 'testdingo', 'version': 0, 'replica': 3, 'autoIncrement': 1, 'indexParameter': {'indexType': 'INDEX_TYPE_VECTOR', 'vectorIndexParameter': {'vectorIndexType': 'VECTOR_INDEX_TYPE_FLAT', 'flatParam': {'dimension': 6, 'metricType': 'METRIC_TYPE_L2'}, 'ivfFlatParam': None, 'ivfPqParam': None, 'hnswParam': None, 'diskAnnParam': None}}}

Add vector

The following example add vector to database.

>>> dingo_client.vector_add("testdingo", [{"a1":"b1", "aa1":"bb1"}, {"a1": "b1"}],[[0.19151945,0.62210876,0.43772775,0.7853586,0.77997583,0.2725926], [0.27746424078941345,0.801872193813324,0.9581393599510193,0.8759326338768005,0.35781726241111755,0.5009950995445251]])
[{'id': 1, 'vector': {'dimension': 6, 'valueType': 'FLOAT', 'floatValues': [0.19151945, 0.62210876, 0.43772775, 0.7853586, 0.77997583, 0.2725926], 'binaryValues': []}, 'scalarData': {'a1': {'fieldType': 'STRING', 'fields': [{'data': 'b1'}]}, 'aa1': {'fieldType': 'STRING', 'fields': [{'data': 'bb1'}]}}}, {'id': 2, 'vector': {'dimension': 6, 'valueType': 'FLOAT', 'floatValues': [0.27746424, 0.8018722, 0.95813936, 0.87593263, 0.35781726, 0.5009951], 'binaryValues': []}, 'scalarData': {'a1': {'fieldType': 'STRING', 'fields': [{'data': 'b1'}]}}}]

Get MAX ID

you can use autoIncrement id, The following example get max id

>>> dingo_client.get_max_index_row("testdingo")
2

Search Vector

The following example Basic Search without metata.

>>> dingo_client.vector_search("testdingo", [[0.19151945,0.62210876,0.43772775,0.7853586,0.77997583,0.2725926]], 10)
[{'vectorWithDistances': [{'id': 1, 'vector': {'dimension': 6, 'valueType': 'FLOAT', 'floatValues': [], 'binaryValues': []}, 'scalarData': {'a1': {'fieldType': 'STRING', 'fields': [{'data': 'b1'}]}, 'aa1': {'fieldType': 'STRING', 'fields': [{'data': 'bb1'}]}}, 'distance': 0.0}, {'id': 2, 'vector': {'dimension': 6, 'valueType': 'FLOAT', 'floatValues': [], 'binaryValues': []}, 'scalarData': {'a1': {'fieldType': 'STRING', 'fields': [{'data': 'b1'}]}}, 'distance': 0.5491189}]}]

The following example Search with metata.

>>> dingo_client.vector_search("testdingo", [0.19151945,0.62210876,0.43772775,0.7853586,0.77997583,0.2725926],10, {"meta_expr": {"aa1": "bb1"}})
{'vectorWithDistances': [{'id': 1, 'vector': {'dimension': 6, 'valueType': 'FLOAT', 'floatValues': [], 'binaryValues': []}, 'scalarData': {'aa1': {'fieldType': 'STRING', 'fields': [{'data': 'bb1'}]}, 'a1': {'fieldType': 'STRING', 'fields': [{'data': 'b1'}]}}, 'distance': 0.0}]}

Query vector with ids

The following example Query vector with ids.

>>> dingo_client.vector_get("testdingo", [2])
[{'id': 2, 'vector': {'dimension': 6, 'valueType': 'FLOAT', 'floatValues': [0.27746424, 0.8018722, 0.95813936, 0.87593263, 0.35781726, 0.5009951], 'binaryValues': []}, 'scalarData': {'a1': {'fieldType': 'STRING', 'fields': [{'data': 'b1'}]}}}]

Detele vector with ids

The following example Detele vector with ids.

>>> dingo_client.vector_delete("testdingo", [2])
[True]

Drop index

The following example Drop one index.

>>> dingo_client.delete_index("testdingo")
True

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dingodb-0.3.0.tar.gz (67.9 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

dingodb-0.3.0-py3-none-any.whl (82.6 kB view details)

Uploaded Python 3

File details

Details for the file dingodb-0.3.0.tar.gz.

File metadata

  • Download URL: dingodb-0.3.0.tar.gz
  • Upload date:
  • Size: 67.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for dingodb-0.3.0.tar.gz
Algorithm Hash digest
SHA256 8b4d0ddbd6450be8824f62753d6f97d34e752c73c19a9bcdfb0cb044424e089a
MD5 f5ff6329181ac9fa0b6aea7b6e2b0494
BLAKE2b-256 4b013c11dbd7d030039e6e8f51f130da5fb8ec75f2cf35168b7d7e6b8f98fe6e

See more details on using hashes here.

File details

Details for the file dingodb-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: dingodb-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 82.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for dingodb-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 5a365562388fa52b5bef921c732d774f19eccd1207866f4fbf418a5bac471b68
MD5 6ec1aa1ff13ff40741a3ed145b9bd403
BLAKE2b-256 d10dedb5e864becefa55e930240ae5f8bcc04db78aebe45a4d6a5fb834dd9ea8

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page