Skip to main content
Join the official Python Developers Survey 2018 and win valuable prizes: Start the survey!

Discretization tools for finite volume and inverse problems

Project description

Latest PyPI version MIT license Travis CI build status Coverage status codacy status

discretize - A python package for finite volume discretization.

The vision is to create a package for finite volume simulation with a focus on large scale inverse problems. This package has the following features:

  • modular with respect to the spacial discretization
  • built with the inverse problem in mind
  • supports 1D, 2D and 3D problems
  • access to sparse matrix operators
  • access to derivatives to mesh variables
https://raw.githubusercontent.com/simpeg/figures/master/finitevolume/cell-anatomy-tensor.png

Currently, discretize supports:

  • Tensor Meshes (1D, 2D and 3D)
  • Cylindrically Symmetric Meshes
  • QuadTree and OcTree Meshes (2D and 3D)
  • Logically Rectangular Meshes (2D and 3D)

Installing

discretize is on pypi

pip install discretize

To install from source

git clone https://github.com/simpeg/discretize.git
python setup.py install

Citing discretize

Please cite the SimPEG paper when using discretize in your work:

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
discretize-0.3.3-cp27-cp27m-win32.whl (390.9 kB) Copy SHA256 hash SHA256 Wheel cp27 Oct 23, 2018
discretize-0.3.3-cp27-cp27m-win_amd64.whl (494.7 kB) Copy SHA256 hash SHA256 Wheel cp27 Oct 23, 2018
discretize-0.3.3-cp35-cp35m-win32.whl (368.8 kB) Copy SHA256 hash SHA256 Wheel cp35 Oct 23, 2018
discretize-0.3.3-cp35-cp35m-win_amd64.whl (460.8 kB) Copy SHA256 hash SHA256 Wheel cp35 Oct 23, 2018
discretize-0.3.3-py2.7-linux-x86_64.egg (2.2 MB) Copy SHA256 hash SHA256 Egg 2.7 Oct 23, 2018
discretize-0.3.3-py3.6-linux-x86_64.egg (2.5 MB) Copy SHA256 hash SHA256 Egg 3.6 Oct 23, 2018
discretize-0.3.3.tar.gz (539.5 kB) Copy SHA256 hash SHA256 Source None Oct 23, 2018

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page