Skip to main content

Distributed and Parallel Computing Framework with/for Python.

Project description

dispy is a rather comprehensive, yet easy to use framework for creating and using compute clusters to execute computations in parallel across multiple processors in a single machine (SMP), among many machines in a cluster, grid or cloud. dispy is well suited for data parallel (SIMD) paradigm where a computation is evaluated with different (large) datasets independently with no communication among computation tasks (except for computation tasks sending intermediate results to the client). If communication/cooperation among tasks is needed, asyncoro framework could be used.

dispy works with Python versions 2.7+ and 3.1+. It has been tested with Linux, OS X and Windows; it may work on other platforms too.

Features

  • dispy is implemented with asyncoro, an independent framework for asynchronous, concurrent, distributed, network programming with coroutines (without threads). asyncoro uses non-blocking sockets with I/O notification mechanisms epoll, kqueue and poll, and Windows I/O Completion Ports (IOCP) for high performance and scalability, so dispy works efficiently with a single node or large cluster(s) of nodes. asyncoro itself has support for distributed/parallel computing, including transferring computations, files etc., and message passing (for communicating with client and other computation tasks), although it doesn’t include job scheduling.

  • Computations (Python functions or standalone programs) and their dependencies (files, Python functions, classes, modules) are distributed automatically.

  • Computation nodes can be anywhere on the network (local or remote). For security, either simple hash based authentication or SSL encryption can be used.

  • After each execution is finished, the results of execution, output, errors and exception trace are made available for further processing.

  • Nodes may become available dynamically: dispy will schedule jobs whenever a node is available and computations can use that node.

  • If callback function is provided, dispy executes that function when a job is finished; this can be used for processing job results as they become available.

  • Client-side and server-side fault recovery are supported:

    If user program (client) terminates unexpectedly (e.g., due to uncaught exception), the nodes continue to execute scheduled jobs. If client-side fault recover option is used when creating a cluster, the results of the scheduled (but unfinished at the time of crash) jobs for that cluster can be retrieved later.

    If a computation is marked reentrant when a cluster is created and a node (server) executing jobs for that computation fails, dispy automatically resubmits those jobs to other available nodes.

  • dispy can be used in a single process to use all the nodes exclusively (with JobCluster - simpler to use) or in multiple processes simultaneously sharing the nodes (with SharedJobCluster and dispyscheduler program).

  • Cluster can be monitored and managed with web browser.

Dependencies

dispy requires asyncoro for concurrent, asynchronous network programming with coroutines. asyncoro can be installed for Python 2.7+ with:

pip install asyncoro

or for Python 3.1+ with:

pip3 install asyncoro

Under Windows efficient polling notifier I/O Completion Ports (IOCP) is supported only if pywin32 is installed; otherwise, inefficient select notifier is used.

Installation

To install dispy for Python 2.7+, run:

pip install dispy

or to install dispy for Python 3.1+, run:

pip3 install dispy

Authors

  • Giridhar Pemmasani

Project details


Release history Release notifications | RSS feed

This version

4.3

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dispy-4.3.tar.gz (269.7 kB view details)

Uploaded Source

File details

Details for the file dispy-4.3.tar.gz.

File metadata

  • Download URL: dispy-4.3.tar.gz
  • Upload date:
  • Size: 269.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for dispy-4.3.tar.gz
Algorithm Hash digest
SHA256 c1c0b3ac04da2288aea451aad38a68ebbb166f24a3cd38938e1fc8728974b24e
MD5 962a62cc7f315ea22fe09c2f3d3aff62
BLAKE2b-256 fc1eea1955cf48c94e05410601d9c9a83522f17741f4a6d4b48ddd35ca353cc0

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page