Skip to main content

Python framework designed to compute different types of features from speech files

Project description

DisVoice

Documentation Status

Image

DisVoice is a python framework designed to compute features from speech files. Disvoice computes glottal, phonation, articulation, prosody, phonological, and features representation learnig strategies using autoencders. The features can be computed both from sustained vowels and continuous speech utterances with the aim to recognize praliguistic aspects from speech.

The features can be used in classifiers to recognize emotions, or communication capabilities of patients with different speech disorders including diseases with functional origin such as larinx cancer or nodules; craneo-facial based disorders such as hipernasality developed by cleft-lip and palate; or neurodegenerative disorders such as Parkinson's or Hungtinton's diseases.

The features are also suitable to evaluate mood problems like depression based on speech patterns.

For additional details about each feature type, and how to use DisVoice, please check

Install

Praat should be installed first, and the executable file should be added as an environmental variable.

For linux

apt-get install praat
pip install disvoice

or

python setup.py install

For Windows

Donwload the latest version of Praat from https://www.fon.hum.uva.nl/praat/download_win.html

and add the path file to the environment variables

Then

pip install disvoice

or

python setup.py install

Kaldi must be installed beforehand for Kaldi output

Reference

If you use Disvoice for research purposes, please cite the following papers, depending on the features you use:

Glottal features

[1] Belalcázar-Bolaños, E. A., Orozco-Arroyave, J. R., Vargas-Bonilla, J. F., Haderlein, T., & Nöth, E. (2016, September). Glottal Flow Patterns Analyses for Parkinson’s Disease Detection: Acoustic and Nonlinear Approaches. In International Conference on Text, Speech, and Dialogue (pp. 400-407). Springer.

Phonation features

[1] T. Arias-Vergara, J. C. Vásquez-Correa, J. R. Orozco-Arroyave, Parkinson's Disease and Aging: Analysis of Their Effect in Phonation and Articulation of Speech, Cognitive computation, (2017).

[2] Vásquez-Correa, J. C., et al. "Towards an automatic evaluation of the dysarthria level of patients with Parkinson's disease." Journal of communication disorders 76 (2018): 21-36.

Articulation features

[1] Vásquez-Correa, J. C., et al. "Towards an automatic evaluation of the dysarthria level of patients with Parkinson's disease." Journal of communication disorders 76 (2018): 21-36.

[2]. J. R. Orozco-Arroyave, J. C. Vásquez-Correa et al. "NeuroSpeech: An open-source software for Parkinson's speech analysis." Digital Signal Processing (2017).

Prosody features

[1]. N., Dehak, P. Dumouchel, and P. Kenny. "Modeling prosodic features with joint factor analysis for speaker verification." IEEE Transactions on Audio, Speech, and Language Processing 15.7 (2007): 2095-2103.

[2] Vásquez-Correa, J. C., et al. "Towards an automatic evaluation of the dysarthria level of patients with Parkinson's disease." Journal of communication disorders 76 (2018): 21-36.

Phonological features

[1] Vásquez-Correa, J. C., et al (2019). Phonet: a Tool Based on Gated Recurrent Neural Networks to Extract Phonological Posteriors from Speech. Proc. Interspeech 2019, 549-553.

Representaton learning-based features

[1] Vasquez-Correa, J. C., et al. (2020). Parallel Representation Learning for the Classification of Pathological Speech: Studies on Parkinson’s Disease and Cleft Lip and Palate. Speech Communication, 122, 56-67.

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

disvoice-0.1.10.tar.gz (16.2 MB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

disvoice-0.1.10-py3-none-any.whl (16.3 MB view details)

Uploaded Python 3

File details

Details for the file disvoice-0.1.10.tar.gz.

File metadata

  • Download URL: disvoice-0.1.10.tar.gz
  • Upload date:
  • Size: 16.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.12

File hashes

Hashes for disvoice-0.1.10.tar.gz
Algorithm Hash digest
SHA256 503bd8132c2d5ec21410303da06f70e56d55b2095ea78d2e9abee2ef07a9b3e3
MD5 50b4620112bbd91a8381b35ad4cf972e
BLAKE2b-256 8fada6a038bdfa6d4cf4a956d318573518ec2b5df5bd7c45d93db8db19187e2b

See more details on using hashes here.

File details

Details for the file disvoice-0.1.10-py3-none-any.whl.

File metadata

  • Download URL: disvoice-0.1.10-py3-none-any.whl
  • Upload date:
  • Size: 16.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.12

File hashes

Hashes for disvoice-0.1.10-py3-none-any.whl
Algorithm Hash digest
SHA256 28cfa663a1987a06c4f62f20270e63e5fe44fdd73ab814dcce8aba7b390b51c1
MD5 668d3a4f5845f99ae45cb990f24d0a7d
BLAKE2b-256 afc15404f467661f5848e5a60ed289b2f7bb7f2833c603be56d24e1d01cb7d1f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page