Skip to main content
Join the official 2020 Python Developers SurveyStart the survey!

A simple database driven reporting engine

Project description

This project aim is to provide a simple database driven reporting engine that output json and highcharts formatted data.


Highcharts

The module highcharts has some spcialized classes for highcharts preformatted json output. The following examples illustrate a bar chart, a group pie chart and a stacked bar chart. More highcharts model will be supported in the future.

Pie Charts

The class PieChartReportQuery specify 4 abstract methods that need to be implemented:

get_series_data(self, **kwargs):
 takes any number of keyword parameters and returns an array of data points of the format [{"name": "<label>", "y": <value>}
get_series_name(self, **kwargs):
 takes any number of keyword parameters and returns and returns a string
get_title(self, **kwargs):
 takes any number of keyword parameters and returns and returns a string
get_form(self, **kwargs):
 takes any number of keyword parameters and returns and returns an array of dictionaries that define the filter form for the report. The specific format depends on the form standard.
from django_reports.highcharts import PieChartReportQuery
from my_app.models import Product, Sale, Category
from django.db.models import Count

FIELD_NAMES = {
    "Product": "product__id__in",
    "Category": "category__id__in",
}

class SalesQuery(PieChartReportQuery):

    def get_series_data(self, **kwargs):
        selected_fields = kwargs.get("selected_fields",{})
        selected_fields = {FIELD_NAMES[f]:selected_fields[f] for f in selected_fields.keys() if len(selected_fields[f]) > 0}
        objects = Sale.objects.all()
        if len(selected_fields.keys()) > 0:
            objects = objects.filter(**selected_fields)
        return [{"name": r['product__name'], "y": r['total']} for r in
            objects.values('product__name').annotate(
                total=Count('product__name')).order_by('total')]

    def get_series_name(self, **kwargs):
        return "Sales"

    def get_title(self, **kwargs):
        return "Sales"

    def get_form(self, **kwargs):
        return [
            {"title":"Product", "type": "dropdown", "options": [(r.id, r.name) for r in Product.objects.all()], "selected": []},
            {"title":"Category", "type": "dropdown", "options": [(r.id, r.name) for r in Category.objects.all()], "selected": []},
        ]


query = SalesQuery()

Grouped and Stacked Bar Charts

BarChartReportQuery implements both stacked and group bar charts. The interfaces is slightly more complex then for pie charts as this charts support multiple series. The data method requirer therefore an indentifier that you can then use to select the appropriate data. You also need to provide x labels and series names. These are the methods that you need to implement:

get_series_data(self, series, **kwargs):
 takes the series name and any number of keyword parameters and returns an array of data points of the values
get_series_names(self, **kwargs):
 takes any number of keyword parameters and returns and returns an array of strings
get_x_labels(self, **kwargs):
 takes any number of keyword parameters and returns an array of strings
get_title(self, **kwargs):
 takes any number of keyword parameters and returns and returns a string
get_form(self, **kwargs):
 takes any number of keyword parameters and returns and returns an array of dictionaries that define the filter form for the report. The specific format depends on the form standard.
from django_reports.highcharts import PieChartReportQuery
from my_app.models import Product, Sale, Category
from django.db.models import Count

FIELD_NAMES = {
    "Product": "product__id__in",
    "Category": "category__id__in",
}

class SalesQuery(PieChartReportQuery):

    def get_series_names(self, series, **kwargs):
        return Category.object.all().values_list("name",flat=True)

    def get_series_data(self, series, **kwargs):
        selected_fields = kwargs.get("selected_fields",{})
        selected_fields = {FIELD_NAMES[f]:selected_fields[f] for f in selected_fields.keys() if len(selected_fields[f]) > 0}
        objects = Sale.objects.filter(category__name=series)
        if len(selected_fields.keys()) > 0:
            objects = objects.filter(**selected_fields)
        return [r['total']} for r in
            objects.values('product__name').annotate(
                total=Count('product__name')).order_by('product__name')]

    def get_x_labels(self, **kwargs):
        return Product.objects.all().order_by('name').values_list("name",flat=True)

    def get_series_name(self, **kwargs):
        return "Sales"

    def get_title(self, **kwargs):
        return "Sales"

    def get_form(self, **kwargs):
        return [
            {"title":"Product", "type": "dropdown", "options": [(r.id, r.name) for r in Product.objects.all()], "selected": []},
            {"title":"Category", "type": "dropdown", "options": [(r.id, r.name) for r in Category.objects.all()], "selected": []},
        ]

query = SalesQuery()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for django-dyn-reports, version 0.9.2
Filename, size File type Python version Upload date Hashes
Filename, size django_dyn_reports-0.9.2-py2.7.egg (20.6 kB) File type Egg Python version 2.7 Upload date Hashes View
Filename, size django-dyn-reports-0.9.2.tar.gz (9.8 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page