Skip to main content

Database querying tool for Django, based on SQL templates

Project description


Database query tool for Django, based on SQL templates

Development status

  • Alpha
  • API may be radically changed until first Beta release
  • Not tested automatically yet


  • 0.6 - stable API
  • 0.7 - automated tests, first Beta release
  • 0.8,<1.0 - minor improvements without API changes, bugfixes
  • 1.0 - first Stable release


SQL is a great and poweruful DSL, which is easeier in maintenance when you're working on complext queries (i.e. reporting queries). But the main problem of raw SQL is a commonly used "spaghetti" anti-pattern, when you're embedding/building SQLs directly in your code.

The solution comes from templating SQLs idea and django-sqltemplate is a simple implementation of it.


Install the package

pip install django-sqltemplate

Add application to the INSTALLED_APPS


Add SQL template(s)

Make sqltemplates directory in your Django app (your app must be added to INSTALLED_APPS):

mkdir <django-project>/<my-app>/sqltemplates

Put hello.sql template in sqltemplates directory:

hello.sql (assuming sqlite syntax)

select 'Hello ' || :name as message

Query the database

>>> import djsqltemplate
>>> hello = djsqltemplate.get('hello.sql')
>>> print hello.values(name='Marcin')
[{'message': u'Hello Marcin'}]

If query returns just one row (as in example above) you may read result directly using .scalar() method:

>>> print hello.scalar(name='Marcin')
Hello Marcin

To fetch results as a list of dictionaries use .values() method:

>>> print hello.values(name='Marcin')
[{'message': u'Hello Marcin'}]

To fetch results as a list of tuples use .values_list() method:

>>> print hello.values_list(name='Marcin')
[(u'Hello Marcin',)]

To fetch results as iterator over tuples use .iterator() method:

>>> print hello.iterator(name='Marcin')
<generator object _fetch at 0x7f8abd202870>

To fetch results as iterator over dictionaries use .dictiterator() method:

>>> print hello.dictiterator(name='Marcin')
<generator object _fetch at 0x7f8abd202820>

Advanced examples

The Counter

Let's assume that we want to count rows returning from hello.sql query. To do that we should create a sql for the counter. But instead of making a new file, we'll create it from string, to show how .from_string() works:

>>> count = djsqltemplate.from_string(
    'select count(*) from ({{ sql|safe }}) x')

Then join the queries together:

>>> import djsqltemplate
>>> hello = djsqltemplate.get('hello.sql').bind(name='Marcin')
>>> count = djsqltemplate.from_string(
    'select count(*) from ({{ sql|safe }}) x')
>>> print count.scalar(sql=hello)

As you can see the :name variable was replaced with Marcin string, and the sql template variable (from The Counter query) was replaced by hello.sql subquery.

How it looks?

>>> print count.bind(sql=hello).pretty()
SELECT count(*)
  (SELECT 'Hello ' || :name AS message) x

How it works?

count and hello objects are TemplateQuery instances:

>>> count, hello
(<sqltemplate.query.TemplateQuery at 0x7f8abd1ee610>,
 <sqltemplate.query.TemplateQuery at 0x7f8abd1ee210>)

The TemplateQuery wraps Django Template instance together with specified context. Calling TemplateQuery produces new instance with extended context (internally using .bind() method), and the outermost context is extended by context of embedded templates.

Context may be set at the factory time setting context argument or by implicit call of .bind() method. Also you can pass extra context arguments directly to .values(), .values_list(), .iterator(), .dictiterator() and .scalar().

>>> hello = djsqltemplate.get('hello.sql', context={'name': 'Marcin'})
>>> print hello.context
{'name': 'Marcin'}

>>> hello = djsqltemplate.get('hello.sql')
>>> print hello.context

>>> hello_marcin = hello.bind(name='Marcin')
>>> print hello_marcin.context
{'name': 'Marcin'}

>>> print hello.scalar(name='Marcin')
Hello Marcin

So in the Counter example we're setting hello instance as a sql variable for the counter.sql template, which is resolved and rendered by {{ sql|safe }} expression, and then (at the execution time) the name variable is passed to cursor.execute() (which is safe and the preferred way of passing query parameters).

Remeber that preparing templates with additional context makes a new instance (a copy) of the original object. This will allow you for easy query customization dependend of your requirements.

Countries searcher

Let's prepare a test table (still assuming sqlite as a db engine):

echo "create table countries (id int, name varchar(64));" | sqlite3 db.sqlite3

Fill the example data:

echo "insert into countries (id, name) values (1, 'Poland'), (2, 'Slovakia'), (3, 'Czech Republic');" | sqlite3 db.sqlite3

Add countries.sql query template:

select id, name from countries
{% if search_for %}where name like '%'||:search_for||'%'{% endif %}
{% if limit %}limit :limit{% endif %} 

Instantiate count and countries templates:

>>> count = djsqltemplate.get('counter.sql')
>>> countries = djsqltemplate.get('countries.sql')

Ask for countries containg letter "a" in their names:

>>> print countries.values(search_for='a')
[{'id': 1, 'name': u'Poland'}, {'id': 2, 'name': u'Slovakia'}]

then count the results:

>>> print count.scalar(sql=countries.bind(search_for='a'))

and limit results if you want:

>>> print countries.values(search_for='a', limit=1)
[{'id': 1, 'name': u'Poland'}]


Multiple database connections

TemplateQuery class provides .using() method which allow you to change connection used to querying database. Just provide connection name (alias) same as for Django's QuerySet.

>>> print countries.using('default').values()

You can set connection name at factory time:

>>> countries = djsqltemplate.get('countries.sql', using='default')

And you can use djsqltemplate.using() as a context manager:

with djsqltemplate.using('default') as tpl:
    countries = tpl.get('countries.sql')
    print countries.values()

Please note that tpl variable is a new factory instance, which will automatically set proper connection to all created TemplateQuery objects. Direct call to djsqltemplate.get() will create objects same as before, without connection set, because it is a shortcut for default factory method.

Default context

Sometimes you may need to set some defaults. To do that you can set default context at a factory time:

>>> countries = djsqltemplate.get('countries.sql', context={'limit': 2})

And by using djsqltemplate.context() context manager:

with djsqltemplate.context(limit=1) as tpl:
    countries = tpl.get('countries.sql')
    print countries.values()

Setting default context and connection together

If you want to set default context together with specific connection, use djsqltemplate.scope() context manager:

with djsqltemplate.scope(context={'limit': 2}, using='default') as tpl:
    countries = tpl.get('countries.sql')
    print countries.values()


  • django-sqltemplate is designed for managing queries of mid/large complexity (like queries above 100 SLOCs, incl. window functions, non-generic syntax, etc)
  • Maintenance of a complex queries is way faster using raw SQL instead of ORM objects (Q(),F(),.aggregate(), etc)
  • The querying should be simplest as possible, incl. joining / embedding templates (we don't want to handle cursors and connections instances manually)
  • It is not a replacement for Django ORM nor SQLAlchemy, and may be used together with (i.e.sqlalchemy.text(str(countries(search_for='a'))) or Django's Manager.raw())
  • There are many good template engines (Django Templates, Jinja2), so we just need to use them and not reinvent the wheel
  • Django 1.8+ has support for multiple templating engines
  • Django is a most popoular RAD framework for Python, but with limited ORM


  • Django 1.8+


  • sqltemplate >= 0.5.0



Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

django-sqltemplate-0.5.2.post2.tar.gz (8.5 kB view hashes)

Uploaded Source

Built Distribution

django_sqltemplate-0.5.2.post2-py3-none-any.whl (10.0 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page