Skip to main content

Django field implementation for PostgreSQL tsvector.

Project description

Package Build Test Coverage


django-tsvector-field is a drop-in replacement for Django’s field that manages the database triggers to keep your search field updated automatically in the background.


Python 3+, Django 1.11+ and psycopg2 are the only requirements.

Install django-tsvector-field with your favorite python tool, e.g. pip install django-tsvector-field.

You have two options to integrate it into your project:

  1. Simply add tsvector_field to your INSTALLED_APPS and start using it. This method uses Django’s pre_migrate signal to inject the database operations into your migrations. This will work fine for many use cases.

    However, you’ll run into issues with this method if you have unmigrated apps or you have disabled migrations for your unit tests. The problem is related to the fact that Django does not send pre_migrate signal for apps that do not have explicit migrations.

  2. Less simple but more reliable method is to create your own database engine module referencing tsvector_field.DatabaseSchemaEditor. This will ensure that the database triggers are reliably created and dropped for all methods of migration.

    Create a ‘db’ directory in your Django project with an and a with the following contents:

    from django.db.backends.postgresql import base
    import tsvector_field
    class DatabaseWrapper(base.DatabaseWrapper):
        SchemaEditorClass = tsvector_field.DatabaseSchemaEditor

    Then update the 'ENGINE' configuration in your DATABASES setting. For example, if your project is called my_project and it has the db module as described above, then change your DATABASE setting to have the following 'ENGINE' configuration:

        'default': {
            'ENGINE': 'my_project.db',


tsvector_field.SearchVectorField works like any other Django field: add it to your model, run makemigrations, run migrate and tsvector_field will take care to create the postgres trigger and stored procedure.

To illustrate how this works we’ll create a TextDocument model with a tsvector_field.SearchVectorField field and two textual fields to be used as inputs for the full text search.

from django.db import models
import tsvector_field

class TextDocument(models.Model):
    title = models.CharField(max_length=128)
    body = models.TextField()
    search = tsvector_field.SearchVectorField([
        tsvector_field.WeightedColumn('title', 'A'),
        tsvector_field.WeightedColumn('body', 'D'),
    ], 'english')

After you’ve migrated you can create some TextDocument records and see that postgres keeps it synchronized in the background. Specifically, because the search field is updated at the database level, you’ll need to call refresh_from_db() to see the new value after a .save() or .create().

>>> doc = TextDocument.objects.create(
...     title="My hovercraft is full of spam.",
...     body="It's what eels love!"
... )
>>> doc.refresh_from_db()
"'eel':10 'full':4A 'hovercraft':2A 'love':11 'spam':6A"

Note that spam is recorded with 6A, this will be important later. Let’s continue with the previous session and create another document.

>>> doc = TextDocument.objects.create(
...     title="What do eels eat?",
...     body="Spam, spam, spam, they love spam!"
... )
>>> doc.refresh_from_db()
"'eat':4A 'eel':3A 'love':9 'spam':5,6,7,10"

Now we have two documents: first document has just one spam with weight A and the second document has 4 spam with lower weight. If we search for spam and apply a search rank then the A weight on the first document will cause that document to appear higher in the results.

>>> from import SearchQuery, SearchRank
>>> from django.db.models.expressions import F
>>> matches = TextDocument.objects\
...     .annotate(rank=SearchRank(F('search'), SearchQuery('spam')))\
...     .order_by('-rank')\
...     .values_list('rank', 'title', 'body')
>>> for match in matches:
...   print(match)
(0.607927, 'My hovercraft is full of spam.', "It's what eels love!")
(0.0865452, 'What do eels eat?', 'Spam, spam, spam, they love spam!')

If you are only interested in getting a list of possible matches without ranking you can filter directly on the search column like so:

>>> TextDocument.objects.filter(search='spam')
<QuerySet [<TextDocument: TextDocument object>, <TextDocument: TextDocument object>]>

Final note about the tsvector_field.SearchVectorField field is that it takes a language_column argument instead of or in addition to the language argument. When both arguments are provided then the database trigger will first look up the value in the language_column and if that is null it will use the language in language.


When adding a tsvector_field.SearchVectorField field to an existing model you likely want to update the search vector for all existing records. django-tsvector-field includes the tsvector_field.IndexSearchVector operation that takes the model name and search vector column as arguments. If we had previously created the TextDocument without a search column then to add search capability we would use the following migration:

from django.db import migrations, models
import tsvector_field

class Migration(migrations.Migration):

    dependencies = []

    operations = [
                tsvector_field.WeightedColumn('title', 'A'),
                tsvector_field.WeightedColumn('body', 'D')
            ], language='english'),
        tsvector_field.IndexSearchVector('textdocument', 'search'),

For more information on querying, see the Django documentation on Full Text Search:

For more information on configuring how the searches work, see PostgreSQL docs:


  • Initial support django 2.0 alpha


  • Automatically create GIN index on tsvector column


  • IndexSearchVector migration operation added
  • documentation fixes
  • Added support for both pre_migrate signal based integration and extending DatabaseSchemaEditor


  • Fixed bug with AlterField migrations.


  • Initial release.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
django_tsvector_field-0.9.4-py3-none-any.whl (14.5 kB) Copy SHA256 hash SHA256 Wheel 3.5
django-tsvector-field-0.9.4.tar.gz (10.2 kB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page