Skip to main content

UIMA CAS processing library in Python

Project description Documentation Status

DKPro cassis (pronunciation: [ka.sis]) is a UIMA CAS utility library in Python. Currently supported features are:

  • Deserializing/serializing UIMA CAS from/to XMI
  • Deserializing/serializing type systems from/to XML
  • Selecting annotations, selecting covered annotations, adding annotations
  • Type inheritance
  • sofa support

Some features are still under development, e.g.

  • feature encoding as XML elements (right now only XML attributes work)
  • proper type checking
  • XML/XMI schema validation
  • type unmarshalling from string to the actual type specified in the type system
  • reference, array and list features


To install the package from the master branch using pip, just run

pip install git+


Example CAS XMI and types system files can be found under tests\test_files.

Loading a CAS

A CAS can be deserialized from XMI either by reading from a file or string using load_cas_from_xmi.

from cassis import *

with open('typesystem.xml', 'rb') as f:
    typesystem = load_typesystem(f)

with open('cas.xml', 'rb') as f:
   cas = load_cas_from_xmi(f, typesystem=typesystem)

Adding annotations

Given a type system with a type cassis.Token that has an id and pos feature, annotations can be added in the following:

from cassis import *

with open('typesystem.xml', 'rb') as f:
    typesystem = load_typesystem(f)

with open('cas.xml', 'rb') as f:
    cas = load_cas_from_xmi(f, typesystem=typesystem)

Token = typesystem.get_type('cassis.Token')

tokens = [
    Token(begin=0, end=3, id='0', pos='NNP'),
    Token(begin=4, end=10, id='1', pos='VBD'),
    Token(begin=11, end=14, id='2', pos='IN'),
    Token(begin=15, end=18, id='3', pos='DT'),
    Token(begin=19, end=24, id='4', pos='NN'),
    Token(begin=25, end=26, id='5', pos='.'),

for token in tokens:

Selecting annotations

from cassis import *

with open('typesystem.xml', 'rb') as f:
    typesystem = load_typesystem(f)

with open('cas.xml', 'rb') as f:
    cas = load_cas_from_xmi(f, typesystem=typesystem)

for sentence in'cassis.Sentence'):
    for token in cas.select_covered('cassis.Token', sentence):

        # Annotation values can be accessed as properties
        print('Token: begin={0}, end={1}, id={2}, pos={3}'.format(token.begin, token.end,, token.pos))

Creating types and adding features

from cassis import *

typesystem = TypeSystem()

parent_type = typesystem.create_type(name='example.ParentType')
typesystem.add_feature(type_=parent_type, name='parentFeature', rangeTypeName='String')

child_type = typesystem.create_type(name='example.ChildType',
typesystem.add_feature(type_=child_type, name='childFeature', rangeTypeName='Integer')

annotation = child_type(parentFeature='parent', childFeature='child')

When adding new features, these changes are propagated. For example, adding a feature to a parent type makes it available to a child type. Therefore, the type system does not need to be frozen for consistency.

Sofa support

A Sofa represents some form of an unstructured artifact that is processed in a UIMA pipeline. It contains for instance the document text. Currently, new Sofas can be created. This is automatically done when creating a new view. Basic properties of the Sofa can be read and written:

cas = Cas()
cas.sofa_string = "Joe waited for the train . The train was late ."
cas.sofa_mime = "text/plain"


Managing views

A view into a CAS contains a subset of feature structures and annotations. One view corresponds to exactly one Sofa. It can also be used to query and alter information about the Sofa, e.g. the document text. Annotations added to one view are not visible in another view. A view Views can be created and changed. A view has the same methods and attributes as a Cas .

from cassis import *

with open('typesystem.xml', 'rb') as f:
    typesystem = load_typesystem(f)
Token = typesystem.get_type('cassis.Token')

# This creates automatically the view `_InitialView`
cas = Cas()
cas.sofa_string = "I like cheese ."

    Token(begin=0, end=1),
    Token(begin=2, end=6),
    Token(begin=7, end=13),
    Token(begin=14, end=15)

print([cas.get_covered_text(x) for x in cas.select_all()])

# Create a new view and work on it.
view = cas.create_view('testView')
view.sofa_string = "I like blackcurrant ."

    Token(begin=0, end=1),
    Token(begin=2, end=6),
    Token(begin=7, end=19),
    Token(begin=20, end=21)

print([view.get_covered_text(x) for x in view.select_all()])


The required dependencies are managed by pip. A virtual environment containing all needed packages for development and production can be created and activated by

virtualenv venv --python=python3 --no-site-packages
sourve venv/bin/activate
pip install -e ".[test, dev, doc]"

The tests can be run in the current environment by invoking

make test

or in a clean environment via


Project details

Release history Release notifications

This version
History Node


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
dkpro_cassis-0.1.1-py2.py3-none-any.whl (19.4 kB) Copy SHA256 hash SHA256 Wheel py2.py3
dkpro-cassis-0.1.1.tar.gz (18.9 kB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page