Skip to main content

Unofficial Python implementation of the DNMF overlapping community detection algorithm

Project description

DNMF

Unofficial Python implementation of the Discrete Non-negative Matrix Factorization (DNMF) overlapping community detection algorithm


Paper

Ye, Fanghua, Chuan Chen, Zibin Zheng, Rong-Hua Li, and Jeffrey Xu Yu. 2019. “Discrete Overlapping Community Detection with Pseudo Supervision.” In 2019 IEEE International Conference on Data Mining (ICDM), 708–17. https://doi.org/10.1109/ICDM.2019.00081.


Requirements

  • python>=3.7.1
  • torch>=1.9.1

Quick start

  • To install the package run one of the two commands:

    • python -m pip install dnmf-python (installation from PyPI)
    • python setup.py install (compile from source, if cloned the repository)
  • To run the algorithm, load the graph adjacency matrix into a torch.FloatTensor (for ex. A), then call:

    from dnmf.DNMF import DNMF
    dnmf = DNMF()
    F = dnmf(A)
    
  • To run a quick test of the algorithm with an example graph, run python src/test.py


Config

The DNMF module supports the following hyperparameters as arguments:

  • alpha: tradeoff parameter for the U-subproblem
  • beta: tradeoff parameter for the F-subproblem
  • gamma: regularization parameter
  • k: desired number of overlapping communities
  • num_outer_iter: number of iterations for the outer loop (SDP iterations)
  • num_inner_iter: number of iterations for the inner loops (U and F subproblems)

Author

Andrej Janchevski

andrej.janchevski@epfl.ch

EPFL STI IEM LIONS

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dnmf-python-0.0.1.tar.gz (4.4 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

dnmf_python-0.0.1-py3-none-any.whl (4.9 kB view details)

Uploaded Python 3

File details

Details for the file dnmf-python-0.0.1.tar.gz.

File metadata

  • Download URL: dnmf-python-0.0.1.tar.gz
  • Upload date:
  • Size: 4.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.1 pkginfo/1.8.1 requests/2.25.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.1

File hashes

Hashes for dnmf-python-0.0.1.tar.gz
Algorithm Hash digest
SHA256 3185957ba5c7e31b9fb6a7d51c35934003759359c9cec83296741194a342008a
MD5 a2b5fc8544ca2de06d98f09cd6db0138
BLAKE2b-256 862e2ae701af2a972cd7051b9c866f4fe1e40bdb0a5d0a89702234277ef64dc3

See more details on using hashes here.

File details

Details for the file dnmf_python-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: dnmf_python-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 4.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.1 pkginfo/1.8.1 requests/2.25.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.1

File hashes

Hashes for dnmf_python-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 d5dbb9a3a52ddc7fa09bd4cf3ec819717d5433ec6da6b7b35c72c6c2e23497b9
MD5 1fec727fb210f3e6254fb91973f59bb1
BLAKE2b-256 33bff2e1b664f8ace538327c6509582f4df1c620787794796b42ef2920ab761c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page