Skip to main content

SDK and CLI for parsing PDF, DOCX, HTML, and more, to a unified document representation for powering downstream workflows such as gen AI applications.

Project description

Docling

Docling

DS4SD%2Fdocling | Trendshift

arXiv Docs PyPI version PyPI - Python Version uv Ruff Pydantic v2 pre-commit License MIT PyPI Downloads Docling Actor Chat with Dosu Discord OpenSSF Best Practices LF AI & Data

Docling simplifies document processing, parsing diverse formats — including advanced PDF understanding — and providing seamless integrations with the gen AI ecosystem.

Features

  • 🗂️ Parsing of multiple document formats incl. PDF, DOCX, PPTX, XLSX, HTML, WAV, MP3, WebVTT, images (PNG, TIFF, JPEG, ...), LaTeX, and more
  • 📑 Advanced PDF understanding incl. page layout, reading order, table structure, code, formulas, image classification, and more
  • 🧬 Unified, expressive DoclingDocument representation format
  • ↪️ Various export formats and options, including Markdown, HTML, DocTags and lossless JSON
  • 🔒 Local execution capabilities for sensitive data and air-gapped environments
  • 🤖 Plug-and-play integrations incl. LangChain, LlamaIndex, Crew AI & Haystack for agentic AI
  • 🔍 Extensive OCR support for scanned PDFs and images
  • 👓 Support of several Visual Language Models (GraniteDocling)
  • 🎙️ Audio support with Automatic Speech Recognition (ASR) models
  • 🔌 Connect to any agent using the MCP server
  • 💻 Simple and convenient CLI

What's new

  • 📤 Structured information extraction [🧪 beta]
  • 📑 New layout model (Heron) by default, for faster PDF parsing
  • 🔌 MCP server for agentic applications
  • 💬 Parsing of Web Video Text Tracks (WebVTT) files
  • 💬 Parsing of LaTeX files

Coming soon

  • 📝 Metadata extraction, including title, authors, references & language
  • 📝 Chart understanding (Barchart, Piechart, LinePlot, etc)
  • 📝 Complex chemistry understanding (Molecular structures)

Installation

To use Docling, simply install docling from your package manager, e.g. pip:

pip install docling

Note: Python 3.9 support was dropped in docling version 2.70.0. Please use Python 3.10 or higher.

Works on macOS, Linux and Windows environments. Both x86_64 and arm64 architectures.

More detailed installation instructions are available in the docs.

Getting started

To convert individual documents with python, use convert(), for example:

from docling.document_converter import DocumentConverter

source = "https://arxiv.org/pdf/2408.09869"  # document per local path or URL
converter = DocumentConverter()
result = converter.convert(source)
print(result.document.export_to_markdown())  # output: "## Docling Technical Report[...]"

More advanced usage options are available in the docs.

CLI

Docling has a built-in CLI to run conversions.

docling https://arxiv.org/pdf/2206.01062

You can also use 🥚GraniteDocling and other VLMs via Docling CLI:

docling --pipeline vlm --vlm-model granite_docling https://arxiv.org/pdf/2206.01062

This will use MLX acceleration on supported Apple Silicon hardware.

Read more here

Documentation

Check out Docling's documentation, for details on installation, usage, concepts, recipes, extensions, and more.

Examples

Go hands-on with our examples, demonstrating how to address different application use cases with Docling.

Integrations

To further accelerate your AI application development, check out Docling's native integrations with popular frameworks and tools.

Get help and support

Please feel free to connect with us using the discussion section.

Technical report

For more details on Docling's inner workings, check out the Docling Technical Report.

Contributing

Please read Contributing to Docling for details.

References

If you use Docling in your projects, please consider citing the following:

@techreport{Docling,
  author = {Deep Search Team},
  month = {8},
  title = {Docling Technical Report},
  url = {https://arxiv.org/abs/2408.09869},
  eprint = {2408.09869},
  doi = {10.48550/arXiv.2408.09869},
  version = {1.0.0},
  year = {2024}
}

License

The Docling codebase is under MIT license. For individual model usage, please refer to the model licenses found in the original packages.

LF AI & Data

Docling is hosted as a project in the LF AI & Data Foundation.

IBM ❤️ Open Source AI

The project was started by the AI for knowledge team at IBM Research Zurich.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

docling-2.73.0.tar.gz (343.0 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

docling-2.73.0-py3-none-any.whl (370.8 kB view details)

Uploaded Python 3

File details

Details for the file docling-2.73.0.tar.gz.

File metadata

  • Download URL: docling-2.73.0.tar.gz
  • Upload date:
  • Size: 343.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for docling-2.73.0.tar.gz
Algorithm Hash digest
SHA256 11c50ac3595a943c63a2d1fab00449ddc06e4097049d18156c9a7ff0d810c42c
MD5 deef0ad747fe449be83dccf8e508f5c5
BLAKE2b-256 fe1e789434931aeeafdc5659d86e9f358fd1259636379c4c02de79fbd563554d

See more details on using hashes here.

Provenance

The following attestation bundles were made for docling-2.73.0.tar.gz:

Publisher: pypi.yml on docling-project/docling

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file docling-2.73.0-py3-none-any.whl.

File metadata

  • Download URL: docling-2.73.0-py3-none-any.whl
  • Upload date:
  • Size: 370.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for docling-2.73.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8123e0fc014af504deeb99df65c7ec2bd9a94ab46dccb2ce56625ea11fd9176f
MD5 0619a06bd2649ebc706a5655be399f2b
BLAKE2b-256 52185fc74e2b350d8f916c7d0a39235b1226d6f1fdad6336f4cd05288d8fc8fc

See more details on using hashes here.

Provenance

The following attestation bundles were made for docling-2.73.0-py3-none-any.whl:

Publisher: pypi.yml on docling-project/docling

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page