Skip to main content

SDK and CLI for parsing PDF, DOCX, HTML, and more, to a unified document representation for powering downstream workflows such as gen AI applications.

Project description

Docling

Docling

DS4SD%2Fdocling | Trendshift

arXiv Docs PyPI version PyPI - Python Version uv Ruff Pydantic v2 pre-commit License MIT PyPI Downloads Docling Actor Chat with Dosu Discord OpenSSF Best Practices LF AI & Data

Docling simplifies document processing, parsing diverse formats — including advanced PDF understanding — and providing seamless integrations with the gen AI ecosystem.

Features

  • 🗂️ Parsing of multiple document formats incl. PDF, DOCX, PPTX, XLSX, HTML, WAV, MP3, WebVTT, images (PNG, TIFF, JPEG, ...), LaTeX, and more
  • 📑 Advanced PDF understanding incl. page layout, reading order, table structure, code, formulas, image classification, and more
  • 🧬 Unified, expressive DoclingDocument representation format
  • ↪️ Various export formats and options, including Markdown, HTML, DocTags and lossless JSON
  • 🔒 Local execution capabilities for sensitive data and air-gapped environments
  • 🤖 Plug-and-play integrations incl. LangChain, LlamaIndex, Crew AI & Haystack for agentic AI
  • 🔍 Extensive OCR support for scanned PDFs and images
  • 👓 Support of several Visual Language Models (GraniteDocling)
  • 🎙️ Audio support with Automatic Speech Recognition (ASR) models
  • 🔌 Connect to any agent using the MCP server
  • 💻 Simple and convenient CLI

What's new

  • 📤 Structured information extraction [🧪 beta]
  • 📑 New layout model (Heron) by default, for faster PDF parsing
  • 🔌 MCP server for agentic applications
  • 💬 Parsing of Web Video Text Tracks (WebVTT) files
  • 💬 Parsing of LaTeX files

Coming soon

  • 📝 Metadata extraction, including title, authors, references & language
  • 📝 Chart understanding (Barchart, Piechart, LinePlot, etc)
  • 📝 Complex chemistry understanding (Molecular structures)

Installation

To use Docling, simply install docling from your package manager, e.g. pip:

pip install docling

Note: Python 3.9 support was dropped in docling version 2.70.0. Please use Python 3.10 or higher.

Works on macOS, Linux and Windows environments. Both x86_64 and arm64 architectures.

More detailed installation instructions are available in the docs.

Getting started

To convert individual documents with python, use convert(), for example:

from docling.document_converter import DocumentConverter

source = "https://arxiv.org/pdf/2408.09869"  # document per local path or URL
converter = DocumentConverter()
result = converter.convert(source)
print(result.document.export_to_markdown())  # output: "## Docling Technical Report[...]"

More advanced usage options are available in the docs.

CLI

Docling has a built-in CLI to run conversions.

docling https://arxiv.org/pdf/2206.01062

You can also use 🥚GraniteDocling and other VLMs via Docling CLI:

docling --pipeline vlm --vlm-model granite_docling https://arxiv.org/pdf/2206.01062

This will use MLX acceleration on supported Apple Silicon hardware.

Read more here

Documentation

Check out Docling's documentation, for details on installation, usage, concepts, recipes, extensions, and more.

Examples

Go hands-on with our examples, demonstrating how to address different application use cases with Docling.

Integrations

To further accelerate your AI application development, check out Docling's native integrations with popular frameworks and tools.

Get help and support

Please feel free to connect with us using the discussion section.

Technical report

For more details on Docling's inner workings, check out the Docling Technical Report.

Contributing

Please read Contributing to Docling for details.

References

If you use Docling in your projects, please consider citing the following:

@techreport{Docling,
  author = {Deep Search Team},
  month = {8},
  title = {Docling Technical Report},
  url = {https://arxiv.org/abs/2408.09869},
  eprint = {2408.09869},
  doi = {10.48550/arXiv.2408.09869},
  version = {1.0.0},
  year = {2024}
}

License

The Docling codebase is under MIT license. For individual model usage, please refer to the model licenses found in the original packages.

LF AI & Data

Docling is hosted as a project in the LF AI & Data Foundation.

IBM ❤️ Open Source AI

The project was started by the AI for knowledge team at IBM Research Zurich.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

docling-2.73.1.tar.gz (345.0 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

docling-2.73.1-py3-none-any.whl (371.5 kB view details)

Uploaded Python 3

File details

Details for the file docling-2.73.1.tar.gz.

File metadata

  • Download URL: docling-2.73.1.tar.gz
  • Upload date:
  • Size: 345.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for docling-2.73.1.tar.gz
Algorithm Hash digest
SHA256 76d2e787cfdc1f2780214066ffbf841c65566be255b5a1e5fd68fb9611e4c051
MD5 33cc23e84c8fdecca65b327c1a5e4886
BLAKE2b-256 bbe21492d9078b716c29e6de41de03e3641f3b7741b180801a2e735542e163a0

See more details on using hashes here.

Provenance

The following attestation bundles were made for docling-2.73.1.tar.gz:

Publisher: pypi.yml on docling-project/docling

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file docling-2.73.1-py3-none-any.whl.

File metadata

  • Download URL: docling-2.73.1-py3-none-any.whl
  • Upload date:
  • Size: 371.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for docling-2.73.1-py3-none-any.whl
Algorithm Hash digest
SHA256 31e762166be0c3c3e97e28b1727e3aad09703160e04443ed1c24866977e157c1
MD5 42e0d9890ccde627dfcbaa132bdbab8c
BLAKE2b-256 cc5e0514dec786d055d8fa26d88ad29d80fee4264d7cb328180ffb8fd375c4d2

See more details on using hashes here.

Provenance

The following attestation bundles were made for docling-2.73.1-py3-none-any.whl:

Publisher: pypi.yml on docling-project/docling

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page