Skip to main content

`dora` goal is to be a low latency, composable, and distributed data flow.

Project description

dora-rerun

dora visualization using rerun

This nodes is still experimental and format for passing Images, Bounding boxes, and text are probably going to change in the future.

Getting Started

cargo install --force rerun-cli@0.15.1

## To install this package
git clone git@github.com:dora-rs/dora.git
cargo install --git https://github.com/dora-rs/dora dora-rerun

Adding to existing graph:

- id: rerun
  custom:
    source: dora-rerun
    inputs:
      image: webcam/image
      text: webcam/text
      boxes2d: object_detection/bbox
    envs:
      RERUN_MEMORY_LIMIT: 25%

Input definition

  • image: UInt8Array + metadata { "width": int, "height": int, "encoding": str }
  • boxes2D: StructArray + metadata { "format": str }
  • text: StringArray
  • jointstate: Float32Array

(Experimental) For plotting 3D URDF

pip install git+https://github.com/rerun-io/rerun-loader-python-example-urdf.git

Make sure to name the dataflow as follows:

- id: rerun
  path: dora-rerun
  inputs:
    jointstate_<ENTITY_NAME>: <ENTITY_NAME>/jointstate
  env:
    <ENTITY_NAME>_urdf: /path/to/<ENTITY_NAME>.urdf
    <ENTITY_NAME>_transform: 0 0.3 0

[!IMPORTANT]
Make sure that the urdf file name correspond to your dataflow object name otherwise, it will not be able to link to the corresponding entity.

[!WARNING] Please make sure to review the following gotchas:

Configurations

  • RERUN_MEMORY_LIMIT: Rerun memory limit

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dora_rerun-0.3.7.tar.gz (116.1 kB view details)

Uploaded Source

Built Distributions

dora_rerun-0.3.7-cp37-abi3-musllinux_1_2_armv7l.whl (3.9 MB view details)

Uploaded CPython 3.7+ musllinux: musl 1.2+ ARMv7l

dora_rerun-0.3.7-cp37-abi3-manylinux_2_34_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.34+ x86-64

dora_rerun-0.3.7-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ x86-64

dora_rerun-0.3.7-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ ARM64

dora_rerun-0.3.7-cp37-abi3-macosx_11_0_arm64.whl (4.4 MB view details)

Uploaded CPython 3.7+ macOS 11.0+ ARM64

File details

Details for the file dora_rerun-0.3.7.tar.gz.

File metadata

  • Download URL: dora_rerun-0.3.7.tar.gz
  • Upload date:
  • Size: 116.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for dora_rerun-0.3.7.tar.gz
Algorithm Hash digest
SHA256 1a3ac29f9148500e7b45627a46f760a961433eabfa70c3462c5b13856a57cb0f
MD5 933302be8a937e387242626ea9b8f484
BLAKE2b-256 a21af2ff25cc0f845727bbe8a79ad73beb47ac9adb509926f3ac416285f71950

See more details on using hashes here.

File details

Details for the file dora_rerun-0.3.7-cp37-abi3-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for dora_rerun-0.3.7-cp37-abi3-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 23b31f2e7a7ca2b8fabf6371416f8fe72dfd5fb4c8a22bec2764ba91c8c0d35c
MD5 14d0cc42675cb88b5ebd8eb0d2e66436
BLAKE2b-256 8c4ba9443570e9ad865ca93cb4261ad32ebee52a8989819e24977cbb5eb69b52

See more details on using hashes here.

File details

Details for the file dora_rerun-0.3.7-cp37-abi3-manylinux_2_34_x86_64.whl.

File metadata

File hashes

Hashes for dora_rerun-0.3.7-cp37-abi3-manylinux_2_34_x86_64.whl
Algorithm Hash digest
SHA256 35c1ab51bb145cc3cd03bf4f39ceb5064d511d2f3465393fd8d0df3ad7456211
MD5 8f9b56e1436b9a85c12c696942eb9acf
BLAKE2b-256 5fd77fd999282d035e33c7ce32f43fb097618e4b516e5980036ef52d994d2e28

See more details on using hashes here.

File details

Details for the file dora_rerun-0.3.7-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dora_rerun-0.3.7-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f190c340487cda91c94edb62412ea8bfc8b804385619f977cb80ba7382573286
MD5 6459c3c184e181000374860721d29ff6
BLAKE2b-256 6d4a8c49bbb4b5d7ee5b131c1fe96dae462cf9cf754d4c96f129bb2563255f1a

See more details on using hashes here.

File details

Details for the file dora_rerun-0.3.7-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dora_rerun-0.3.7-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 47a531def2d5fb2c074d9bd879e1e729d0cc65256358e3c5465ae458e58fd5e4
MD5 5ddcb876dd465bb93ae55f17e7936d02
BLAKE2b-256 72900b5660e99853e7e498b02d2b1f290e5a27f0adcd9f251da9b84d4b1e1887

See more details on using hashes here.

File details

Details for the file dora_rerun-0.3.7-cp37-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dora_rerun-0.3.7-cp37-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 32007c01347f57d4f45ddc104ec6c3e382ed67706a19f5e3993a01dec5c6af40
MD5 7fda7154448791c098f59c88610b2792
BLAKE2b-256 bf12801c28facaa25e0b88b87b407acb4ec43b8f892d151a2a9ae1dee47ef001

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page