This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description

Description

dpcluster is a package for grouping together (clustering) vectors. It automatically chooses the number of clusters that fits the data best. Specifically, it models the data as a Dirichlet Process mixture in the exponential family. For a tutorial see “Dirichlet Process” by Y.W. Teh (2010). Currently the only distribution implemented is the multivariate Gaussian with a Normal-Inverse-Wishart conjugate prior but extensions to other distributions are possible.

Two inference algorithms are implemented:

To install locally run:

python setup.py install --user

Usage

Here is a simple example to demonstrate clustering a number of random points in the plane:

>>> from dpcluster import *
>>> n = 10
>>> data = np.random.normal(size=2*n).reshape(-1,2)
>>> vdp = VDP(GaussianNIW(2))
>>> vdp.batch_learn(vdp.distr.sufficient_stats(data))
>>> plt.scatter(data[:,0],data[:,1])
>>> vdp.plot_clusters(slc=np.array([0,1]))
>>> plt.show()

Running this might produce 2-3 clusters depending on the randomly generated data. The adaptive nature of the Dirichlet Process mixture model becomes apparent when we increase the number of data points from n = 10 to n = 500. In this case the clustering algorithm will likely explain the data using only one cluster.

ToDo

  • Implement more clustering algorithms e.g. based on Gibbs sampling, expectation propagation, stochastic gradient descent.
  • Implement more clustering distributions.
  • Re-implement algorithms to take advantage of multi-core or GPU computing.
Release History

Release History

0.104

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.103

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.102

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.101

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
dpcluster-0.104.linux-x86_64.tar.gz (34.7 kB) Copy SHA256 Checksum SHA256 any Dumb Binary Jun 21, 2013
dpcluster-0.104.tar.gz (14.6 kB) Copy SHA256 Checksum SHA256 Source Jun 21, 2013

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS HPE HPE Development Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting