A set of tools for data extraction from the GDP database and estimating travel times
Project description
DriftMLP
This package contains tools for implementing the methodology associated with the paper Estimating the travel time and the most likely path from Lagrangian drifters Code to reproduce figures from paper, hence a sample use of this package can be found at Github link to paper figure reproduction code.
Documentation
The Documentation can be found @ https://driftmlp.readthedocs.io/
Interactive Web Application
Minimal Example
The below example produces an estimate of the pathway and travel time of going between from_loc and to_loc.
import driftmlp
T_mat = driftmlp.load_default_network()
from_loc = [-90.90, 23.88]
to_loc = [-9.88, 35.80]
SP = driftmlp.shortest_path.SingleSP(T_mat, from_loc, to_loc)
display(SP)
SP.plot_folium()
General usage
The package has 2 main usage components
DriftMLP.driftfile_to_networkwill form the network from the hdf5 file above which is the most computationally intensive partDriftMLP.shortest_pathmodule contains functions which require a network to run.SingleSPis sufficient for most usage. It will take the network and a pair of locations and results in a class containing both the path there and back. The travel time of this path may be accessed via the .sp.travel_time attribute. Has methods.plot_cartopyand.plot_foliumfor convince.network_pathis a more customizable class which can be used for manual adaptations. It takes in two h3 indices and stores the path going from the first to the second. Stores travel path in network indices (.nid), spatial discretization indices (.h3id) and travel time in days (.travel_time).
DriftMLP.rotationscontains functionality to generate random rotations. See paper for further details. This has two options one method by ARVO and one by shoemake. The Shoemake quaternion approach is advised.DriftMLP.plottingVarious functions for h3 index sequence plotting. Two backends are there on using folium, one using cartopy. Folium is easier to view and scroll around with. Cartopy/Matplotlib are far more customizable and can produce publication ready graphics.
TODO
- Publish to pip/ conda-forge.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file driftmlp-1.2.linux-x86_64.tar.gz.
File metadata
- Download URL: driftmlp-1.2.linux-x86_64.tar.gz
- Upload date:
- Size: 10.8 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.5.0.1 requests/2.25.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
1e26ba0ade1a65ba81e99e53ac766011d3c761f0c772404a4a9f6c9ec226d7f3
|
|
| MD5 |
a347a22e915467a99b3d78acf85d770a
|
|
| BLAKE2b-256 |
87eff917708997c108c2ad1c3965b512700f78d41f873cf888e518a8886dc2a6
|
File details
Details for the file driftmlp-1.2-py3-none-any.whl.
File metadata
- Download URL: driftmlp-1.2-py3-none-any.whl
- Upload date:
- Size: 11.4 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.5.0.1 requests/2.25.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
d55788885b73dbe66fd50e64e882135ab7a43b7dc8ccc8c02dcf9f0b1b3f6e25
|
|
| MD5 |
00193915f99551269d5d307c503a01b2
|
|
| BLAKE2b-256 |
dd2b30d90c3f8e716214355f8af4f6d470059b096df585f0a7d69f59505db95b
|