Skip to main content

Uniform interface for multiple dust reddening maps.

Project description

DOI DOI

dustmaps

The dustmaps package provides a uniform interface for dealing with a number of 2D and 3D maps of interstellar dust reddening/extinction.

Supported Dust Maps

The currently supported dust maps are:

  1. Burstein & Heiles (1982; BH'82)
  2. Chen et al. (2014)
  3. Green, Schlafly, Finkbeiner et al. (2015,2018,2019; Bayestar)
  4. Marshall et al. (2006)
  5. Planck Collaboration (2013)
  6. Planck Collaboration (2016; GNILC)
  7. Sale et al. (2014; IPHAS)
  8. Schlegel, Finkbeiner & Davis (1998; SFD'98)
  9. Lenz, Hensley & Doré (2017)
  10. Peek & Graves (2010)
  11. Leike & Enßlin (2019)
  12. Leike, Glatzle & Enßlin (2020)
  13. Edenhofer et al. (2023)
  14. Chiang (2023; CSFD)
  15. Zucker, Saydjari, & Speagle et al. (2025; DECaPS)

To request addition of another dust map in this package, file an issue on GitHub, or submit a pull request.

Installation

Download the repository from GitHub and then run:

python setup.py install --large-data-dir=/path/where/you/want/large/data/files/stored

Alternatively, you can use the Python package manager pip:

pip install dustmaps

Getting the Data

To fetch the data for the SFD dust map, run:

python setup.py fetch --map-name=sfd

You can download the other dust maps by changing "sfd" to "csfd", "planck", "planckGNILC", "bayestar", "iphas", "marshall", "chen2014", "lenz2017", "pg2010", "leikeensslin2019", "leike2020", "edenhofer2023", "bh", or "decaps".

Alternatively, if you have used pip to install dustmaps, then you can configure the data directory and download the data by opening up a python interpreter and running:

>>> from dustmaps.config import config
>>> config['data_dir'] = '/path/where/you/want/large/data/files/stored'
>>>
>>> import dustmaps.sfd
>>> dustmaps.sfd.fetch()
>>>
>>> import dustmaps.csfd
>>> dustmaps.csfd.fetch()
>>>
>>> import dustmaps.planck
>>> dustmaps.planck.fetch()
>>>
>>> import dustmaps.planck
>>> dustmaps.planck.fetch(which='GNILC')
>>>
>>> import dustmaps.bayestar
>>> dustmaps.bayestar.fetch()
>>>
>>> import dustmaps.iphas
>>> dustmaps.iphas.fetch()
>>>
>>> import dustmaps.marshall
>>> dustmaps.marshall.fetch()
>>>
>>> import dustmaps.chen2014
>>> dustmaps.chen2014.fetch()
>>>
>>> import dustmaps.lenz2017
>>> dustmaps.lenz2017.fetch()
>>>
>>> import dustmaps.pg2010
>>> dustmaps.pg2010.fetch()
>>>
>>> import dustmaps.leike_ensslin_2019
>>> dustmaps.leike_ensslin_2019.fetch()
>>>
>>> import dustmaps.leike2020
>>> dustmaps.leike2020.fetch()
>>>
>>> import dustmaps.edenhofer2023
>>> dustmaps.edenhofer2023.fetch()
>>>
>>> import dustmaps.decaps
>>> dustmaps.decaps.fetch()

Querying the Maps

Maps are queried using astropy.coordinates.SkyCoord objects. This means that any coordinate system supported by astropy can be used as input. For example, we can query SFD'98 as follows:

>>> from dustmaps.sfd import SFDQuery
>>> from astropy.coordinates import SkyCoord
>>>
>>> sfd = SFDQuery()
>>>
>>> c = SkyCoord(
        '05h00m00.00000s',
        '+30d00m00.0000s',
        frame='icrs')
>>> print sfd(c)
0.483961

Above, we have used the ICRS coordinate system (the inputs are RA and Dec). We can use other coordinate systems, such as Galactic coordinates, and we can provide coordinate arrays. The following example uses both features:

>>> c = SkyCoord(
        [75.00000000, 130.00000000],
        [-89.00000000, 10.00000000],
        frame='galactic',
        unit='deg')
>>> print sfd(c)
[ 0.0146584   0.97695869]

Documentation

Read the full documentation at http://dustmaps.readthedocs.io/en/latest/.

Citation

If you make use of this software in a publication, please cite Green (2018) in The Journal of Open Source Software:

@ARTICLE{2018JOSS....3..695M,
       author = {{Green}, {Gregory M.}},
        title = "{dustmaps: A Python interface for maps of interstellar dust}",
      journal = {The Journal of Open Source Software},
         year = "2018",
        month = "Jun",
       volume = {3},
       number = {26},
        pages = {695},
          doi = {10.21105/joss.00695},
       adsurl = {https://ui.adsabs.harvard.edu/abs/2018JOSS....3..695M},
      adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

Development

Development of dustmaps takes place on GitHub, at https://github.com/gregreen/dustmaps. Any bugs, feature requests, pull requests, or other issues can be filed there. Contributions to the software are welcome.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dustmaps-1.0.14.tar.gz (1.8 MB view details)

Uploaded Source

Built Distribution

dustmaps-1.0.14-py3-none-any.whl (754.8 kB view details)

Uploaded Python 3

File details

Details for the file dustmaps-1.0.14.tar.gz.

File metadata

  • Download URL: dustmaps-1.0.14.tar.gz
  • Upload date:
  • Size: 1.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for dustmaps-1.0.14.tar.gz
Algorithm Hash digest
SHA256 51347809dcd186d14c4f88c7856bb11a931bc422e8f57774e9c90d19e76c43cf
MD5 35cb8b8c00abcfaa1210998ff8cf6bdf
BLAKE2b-256 5b5c17092ef3580f1e2a4574de0c794d86d9b5d865f2eba05f4eacaa3e8af6ea

See more details on using hashes here.

File details

Details for the file dustmaps-1.0.14-py3-none-any.whl.

File metadata

  • Download URL: dustmaps-1.0.14-py3-none-any.whl
  • Upload date:
  • Size: 754.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for dustmaps-1.0.14-py3-none-any.whl
Algorithm Hash digest
SHA256 201bb78a8569d4a4907d2b044e96ba9b2d012b19ac62fbd2c45b516203b21472
MD5 365ca45763b7ca9ac4cb96a65ce145d8
BLAKE2b-256 ca17fcf593cc07f6b060318d3590c09ca7793b45d14428ebbc121e392c240b60

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page