Uniform interface for multiple dust reddening maps.
Project description
dustmaps
The dustmaps package provides a uniform interface for dealing with a number
of 2D and 3D maps of interstellar dust reddening/extinction.
Supported Dust Maps
The currently supported dust maps are:
- Burstein & Heiles (1982; BH'82)
- Chen et al. (2014)
- Green, Schlafly, Finkbeiner et al. (2015,2018,2019; Bayestar)
- Marshall et al. (2006)
- Planck Collaboration (2013)
- Planck Collaboration (2016; GNILC)
- Sale et al. (2014; IPHAS)
- Schlegel, Finkbeiner & Davis (1998; SFD'98)
- Lenz, Hensley & Doré (2017)
- Peek & Graves (2010)
- Leike & Enßlin (2019)
- Leike, Glatzle & Enßlin (2020)
- Edenhofer et al. (2023)
- Chiang (2023; CSFD)
- Zucker, Saydjari, & Speagle et al. (2025; DECaPS)
To request addition of another dust map in this package, file an issue on GitHub, or submit a pull request.
Installation
Download the repository from GitHub and then run:
python setup.py install --large-data-dir=/path/where/you/want/large/data/files/stored
Alternatively, you can use the Python package manager pip:
pip install dustmaps
Getting the Data
To fetch the data for the SFD dust map, run:
python setup.py fetch --map-name=sfd
You can download the other dust maps by changing "sfd" to "csfd", "planck", "planckGNILC", "bayestar", "iphas", "marshall", "chen2014", "lenz2017", "pg2010", "leikeensslin2019", "leike2020", "edenhofer2023", "bh", or "decaps".
Alternatively, if you have used pip to install dustmaps, then you can
configure the data directory and download the data by opening up a python
interpreter and running:
>>> from dustmaps.config import config
>>> config['data_dir'] = '/path/where/you/want/large/data/files/stored'
>>>
>>> import dustmaps.sfd
>>> dustmaps.sfd.fetch()
>>>
>>> import dustmaps.csfd
>>> dustmaps.csfd.fetch()
>>>
>>> import dustmaps.planck
>>> dustmaps.planck.fetch()
>>>
>>> import dustmaps.planck
>>> dustmaps.planck.fetch(which='GNILC')
>>>
>>> import dustmaps.bayestar
>>> dustmaps.bayestar.fetch()
>>>
>>> import dustmaps.iphas
>>> dustmaps.iphas.fetch()
>>>
>>> import dustmaps.marshall
>>> dustmaps.marshall.fetch()
>>>
>>> import dustmaps.chen2014
>>> dustmaps.chen2014.fetch()
>>>
>>> import dustmaps.lenz2017
>>> dustmaps.lenz2017.fetch()
>>>
>>> import dustmaps.pg2010
>>> dustmaps.pg2010.fetch()
>>>
>>> import dustmaps.leike_ensslin_2019
>>> dustmaps.leike_ensslin_2019.fetch()
>>>
>>> import dustmaps.leike2020
>>> dustmaps.leike2020.fetch()
>>>
>>> import dustmaps.edenhofer2023
>>> dustmaps.edenhofer2023.fetch()
>>>
>>> import dustmaps.decaps
>>> dustmaps.decaps.fetch()
Querying the Maps
Maps are queried using
astropy.coordinates.SkyCoord
objects. This means that any coordinate system supported by astropy can be
used as input. For example, we can query SFD'98 as follows:
>>> from dustmaps.sfd import SFDQuery
>>> from astropy.coordinates import SkyCoord
>>>
>>> sfd = SFDQuery()
>>>
>>> c = SkyCoord(
'05h00m00.00000s',
'+30d00m00.0000s',
frame='icrs')
>>> print sfd(c)
0.483961
Above, we have used the ICRS coordinate system (the inputs are RA and Dec). We can use other coordinate systems, such as Galactic coordinates, and we can provide coordinate arrays. The following example uses both features:
>>> c = SkyCoord(
[75.00000000, 130.00000000],
[-89.00000000, 10.00000000],
frame='galactic',
unit='deg')
>>> print sfd(c)
[ 0.0146584 0.97695869]
Documentation
Read the full documentation at http://dustmaps.readthedocs.io/en/latest/.
Citation
If you make use of this software in a publication, please cite Green (2018) in The Journal of Open Source Software:
@ARTICLE{2018JOSS....3..695M,
author = {{Green}, {Gregory M.}},
title = "{dustmaps: A Python interface for maps of interstellar dust}",
journal = {The Journal of Open Source Software},
year = "2018",
month = "Jun",
volume = {3},
number = {26},
pages = {695},
doi = {10.21105/joss.00695},
adsurl = {https://ui.adsabs.harvard.edu/abs/2018JOSS....3..695M},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
Development
Development of dustmaps takes place on GitHub, at
https://github.com/gregreen/dustmaps. Any bugs, feature requests, pull requests,
or other issues can be filed there. Contributions to the software are welcome.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file dustmaps-1.0.14.tar.gz.
File metadata
- Download URL: dustmaps-1.0.14.tar.gz
- Upload date:
- Size: 1.8 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
51347809dcd186d14c4f88c7856bb11a931bc422e8f57774e9c90d19e76c43cf
|
|
| MD5 |
35cb8b8c00abcfaa1210998ff8cf6bdf
|
|
| BLAKE2b-256 |
5b5c17092ef3580f1e2a4574de0c794d86d9b5d865f2eba05f4eacaa3e8af6ea
|
File details
Details for the file dustmaps-1.0.14-py3-none-any.whl.
File metadata
- Download URL: dustmaps-1.0.14-py3-none-any.whl
- Upload date:
- Size: 754.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
201bb78a8569d4a4907d2b044e96ba9b2d012b19ac62fbd2c45b516203b21472
|
|
| MD5 |
365ca45763b7ca9ac4cb96a65ce145d8
|
|
| BLAKE2b-256 |
ca17fcf593cc07f6b060318d3590c09ca7793b45d14428ebbc121e392c240b60
|