Skip to main content

Simple DICOM tag editor built with wxPython and pydicom

Project description

  DVHA logo

DVHA Stats

A library of prediction and statistical process control tools. Although based on work in DVH Analytics, all tools in this library are generic and not specifically applicable to any one field.

build PyPi Version LGTM Code Quality

What does it do?

  • Read data from CSV or supply as numpy array
  • Plotting
    • Simple one-variable plots from data
    • Control Charts
    • Multivariate Control Charts
  • Perform Box-Cox transformations
  • Calculate Pearson-R correlation matrices
  • Perform Multi-Variable Linear Regressions

Coming Soon:

  • PyPI installation
  • Multi-Variable Regression plots
  • Backward-elimination for Multi-Variable Linear Regressions
  • Risk-Adjusted Control Charts using Multi-Variable Linear Regressions
  • Machine learning regressions based on scikit-learn
  • Complete unit testing

NOTE: This project is brand new and very much under construction.

Source-Code Installation

pip install dvha-stats

or

pip install git+https://github.com/cutright/DVHA-Stats.git

Or clone the project and run:

python setup.py install

Dependencies

Initialize and Plot Data

>>> from dvhastats.stats import DVHAStats
>>> s = DVHAStats("tests/testdata/multivariate_data.csv")
>>> s.get_data_by_var_name('V1')
array([56.5, 48.1, 48.3, 65.1, 47.1, 49.9, 49.5, 48.9, 35.5, 44.5, 40.3,
       43.5, 43.7, 47.5, 39.9, 42.9, 37.9, 48.7, 41.3, 47.1, 35.9, 46.5,
       45.1, 24.3, 43.5, 45.1, 46.3, 41.1, 35.5, 41.1, 37.3, 42.1, 47.1,
       46.5, 43.3, 45.9, 39.5, 50.9, 44.1, 40.1, 45.7, 20.3, 46.1, 43.7,
       43.9, 36.5, 45.9, 48.9, 44.7, 38.1,  6.1,  5.5, 45.1, 46.5, 48.9,
       48.1, 45.7, 57.1, 35.1, 46.5, 29.5, 41.5, 53.3, 45.3, 41.9, 45.9,
       43.1, 43.9, 46.1])

>>> s.show('V1')  # or s.show(0), can provide index or var_name
Data Plot

Univariate Control Chart

>>> ucc = s.univariate_control_charts()
>>> print(ucc.keys())
dict_keys(['V1', 'V2', 'V3', 'V4', 'V5', 'V6'])

>>> print(uni_cc['V1'])
center_line: 42.845
control_limits: 22.210, 63.480
out_of_control: [ 3 41 50 51]

ucc["V1"].show()  # or ucc[0].show(), can provide index or var_name
Univariate Control Chart

Hotelling T^2

Example to calculate the Hotelling T^2 values from a csv file

>>> ht2 = s.hotelling_t2()
>>> print(ht2)
Q: [ 5.75062092  3.80141786  3.67243782 18.80124504  2.03849294 18.15447155
  4.54475048 10.40783971  3.60614333  4.03138994  6.45171623  4.60475303
  2.29185301 15.7891342   3.0102578   6.36058098  5.56477106  3.92950273
  1.70534379  2.14021007  7.3839626   1.16554558  7.89636669 20.13613585
  3.76034723  0.93179106  2.05542886  2.65257506  1.31049764  1.59880892
  2.13839258  3.33331329  4.01060102  2.71837612 10.0744586   4.50776545
  1.87955428  7.13423455  4.1773818   3.70446025  3.49570988 11.52822658
  5.874624    2.34515306  2.71884639  2.58457841  3.2591779   4.69554484
  9.1358149   2.64106059 21.21960037 22.6229493   1.55545875  2.29606726
  3.96926714  2.69041382  1.47639788 17.83532339  4.03627833  1.78953536
 15.7485067   1.56110637  2.53753085  2.04243193  6.20630748 14.39527077
  9.88243129  3.70056854  4.92888799]
center_line: 5.375
control_limits: 0, 13.555
out_of_control: [ 3  5 13 23 50 51 57 60 65]

>>> ht2.show()
Multivariate Control Chart

Hotelling T^2 with Box-Cox Transformation

Example to calculate the Hotelling T^2 values and apply a Box-Cox transformation

>>> ht2_bc = s.hotelling_t2(box_cox=True)
>>> ht2_bc.show()
Multivariate Control Chart with Box-Cox Transformation

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dvha-stats-0.1.1.tar.gz (19.7 kB view details)

Uploaded Source

Built Distribution

dvha_stats-0.1.1-py3-none-any.whl (15.0 kB view details)

Uploaded Python 3

File details

Details for the file dvha-stats-0.1.1.tar.gz.

File metadata

  • Download URL: dvha-stats-0.1.1.tar.gz
  • Upload date:
  • Size: 19.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.6

File hashes

Hashes for dvha-stats-0.1.1.tar.gz
Algorithm Hash digest
SHA256 f9c9c2f6bad3a4e172e85a89f306ff060bbb25a58621b56a784ca9000bb19a77
MD5 cbad41b6fd79caaf1e154261610d66a7
BLAKE2b-256 1f4ce00443371d3aacca3de6fa560f260b9b8ecec32f8d20d4fd81399f86c51e

See more details on using hashes here.

File details

Details for the file dvha_stats-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: dvha_stats-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 15.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.6

File hashes

Hashes for dvha_stats-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 31f79bd3d923cf792f438fbe5eb8ee92811fe79d530eb56dc015824033cbfb10
MD5 5cccf792fa5bf2d4885d55b08826abdd
BLAKE2b-256 7815d58b2eadc8b46972623e8b5a5b575f8e0426e243f4e7b93eaefef942ef70

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page