Skip to main content

Ocean-compatible collection of solvers/samplers

Project description

https://img.shields.io/pypi/v/dwave-samplers.svg https://img.shields.io/pypi/pyversions/dwave-samplers.svg https://codecov.io/gh/dwavesystems/dwave-samplers/branch/main/graph/badge.svg https://circleci.com/gh/dwavesystems/dwave-samplers.svg?style=svg

dwave-samplers

Ocean software provides a variety of quantum, classical, and quantum-classical hybrid dimod samplers that run either remotely (for example, in the Leap service) or locally on your CPU.

Supported Samplers

dwave-samplers implements the following classical algorithms for solving binary quadratic models (BQM):

  • Planar: an exact solver for planar Ising problems with no linear biases.

  • Random: a sampler that draws uniform random samples.

  • Simulated Annealing: a probabilistic heuristic for optimization and approximate Boltzmann sampling well suited to finding good solutions of large problems.

  • Simulated Quantum Annealing: a heuristic for optimization or approximate sampling.

  • Steepest Descent: a discrete analogue of gradient descent, often used in machine learning, that quickly finds a local minimum.

  • Tabu: a heuristic that employs local search with methods to escape local minima.

  • Tree Decomposition: an exact solver for problems with low treewidth.

Planar

There are polynomial-time algorithms for finding the ground state of a planar Ising model [1].

>>> from dwave.samplers import PlanarGraphSolver
>>> solver = PlanarGraphSolver()

Get the ground state of a planar Ising model

>>> h = {}
>>> J = {(0, 1): -1, (1, 2): -1, (0, 2): 1}
>>> sampleset = solver.sample_ising(h, J)

Random

Random samplers provide a useful baseline performance comparison. The variable assignments in each sample are chosen by a coin flip.

>>> from dwave.samplers import RandomSampler
>>> sampler = RandomSampler()

Create a random binary quadratic model.

>>> import dimod
>>> bqm = dimod.generators.gnp_random_bqm(100, .5, 'BINARY')

Get the best 5 sample found in .1 seconds.

>>> sampleset = sampler.sample(bqm, time_limit=.1, max_num_samples=5)
>>> num_reads = sampleset.info['num_reads']  # the total number of samples generated

Simulated Annealing

Simulated annealing can be used for heuristic optimization or approximate Boltzmann sampling. The dwave-samplers implementation approaches the equilibrium distribution by performing updates at a sequence of decreasing temperatures, terminating at the target β.[2] Each spin is updated once in a fixed (by default) or randomized order per point per temperature according to a customizable (by default Metropolis-Hastings) update. When the temperature is low the target distribution concentrates, at equilibrium, over ground states of the model. Samples are guaranteed to match the equilibrium for long, smooth temperature schedules. Schedules are customizable so that the sampler can be used for standard Metropolis, Gibbs, Block-Gibbs or reverse annealing dynamics.

>>> from dwave.samplers import SimulatedAnnealingSampler
>>> sampler = SimulatedAnnealingSampler()

Create a random binary quadratic model.

>>> import dimod
>>> bqm = dimod.generators.gnp_random_bqm(100, .5, 'BINARY')

Sample using simulated annealing with both the default temperature schedule and a custom one.

>>> sampleset = sampler.sample(bqm)
>>> sampleset = sampler.sample(bqm, beta_range=[.1, 4.2], beta_schedule_type='linear')

Simulated Quantum Annealing

Simulated quantum annealing can be used for heuristic optimization or approximate sampling. The dwave-samplers implementation performs dynamics defined by a schedule for the driver(transverse) and problem(diagonal, binary quadratic model) Hamiltonian terms. Each spin is updated according to a model-appropriate update as the schedule is stepped through in discretized time (by sweep). Using these methods equilibrated (thermalized) quantum Boltzmann distributions can be approached, or the QPU schedule can be provided to simulate by classical dynamics the annealing process. Although out-of-equilibrium dynamics and dynamical timescales cannot be simulated by these classical methods, some phenomena can be emulated beyond what is possible with simulated annealing. For algorithm details see [1]

[1] https://doi.org/10.1038/s41467-021-20901-5

>>> from dwave.samplers import PathIntegralAnnealingSampler
>>> sampler = PathIntegralAnnealingSampler()  # or RotorModelAnnealingSampler()

Create a random binary quadratic model.

>>> import dimod
>>> bqm = dimod.generators.gnp_random_bqm(100, .5, 'BINARY')

Sample projected states from a quantum process with a linear schedule

>>> sampleset = sampler.sample(bqm, beta_schedule_type="custom", Hp_field=[0, 10],  Hd_field=[10, 0])

Steepest Descent

Steepest descent is the discrete analogue of gradient descent, but the best move is computed using a local minimization rather rather than computing a gradient. The dimension along which to descend is determined, at each step, by the variable flip that causes the greatest reduction in energy.

Steepest descent is fast and effective for unfrustrated problems, but it can get stuck in local minima.

The quadratic unconstrained binary optimization (QUBO) E(x, y) = x + y - 2.5 * x * y, for example, has two local minima: (0, 0) with an energy of 0 and (1, 1) with an energy of -0.5.

>>> from dwave.samplers import SteepestDescentSolver
>>> solver = SteepestDescentSolver()

Construct the QUBO:

>>> from dimod import Binaries
>>> x, y = Binaries(['x', 'y'])
>>> qubo = x + y - 2.5 * x * y

If the solver starts uphill from the global minimum, it takes the steepest path and finds the optimal solution.

>>> sampleset = solver.sample(qubo, initial_states={'x': 0, 'y': 1})
>>> print(sampleset)
   x  y energy num_oc. num_st.
0  1  1   -0.5       1       1
['BINARY', 1 rows, 1 samples, 2 variables]

If the solver starts in a local minimum, it gets stuck.

>>> sampleset = solver.sample(qubo, initial_states={'x': 0, 'y': 0})
>>> print(sampleset)
   x  y energy num_oc. num_st.
0  0  0    0.0       1       0
['BINARY', 1 rows, 1 samples, 2 variables]

Tabu

Tabu search is a heuristic that employs local search and can escape local minima by maintaining a “tabu list” of recently explored states that it does not revisit. The length of this tabu list is called the “tenure”. dwave-samplers implements the MST2 multistart tabu search algorithm for quadratic unconstrained binary optimization (QUBO) problems.

Each read of the tabu algorithm consists of many starts. The solver takes the best non-tabu step repeatedly until it does not improve its energy any more.

>>> from dwave.samplers import TabuSampler
>>> sampler = TabuSampler()

Construct a simple problem.

>>> from dimod import Binaries
>>> a, b = Binaries(['a', 'b'])
>>> qubo = -.5 * a + b - a * b

Sample using both default and custom values of tenure and number of restarts.

>>> sampleset0 = sampler.sample(qubo)
>>> sampleset1 = sampler.sample(qubo, tenure=1, num_restarts=1)

Tree Decomposition

Tree decomposition-based solvers have a runtime that is exponential in the treewidth of the problem graph. For problems with low treewidth, the solver can find ground states very quickly. However, for even moderately dense problems, performance is very poor.

>>> from dwave.samplers import TreeDecompositionSolver
>>> solver = TreeDecompositionSolver()

Construct a large, tree-shaped problem.

>>> import dimod
>>> import networkx as nx
>>> tree = nx.balanced_tree(2, 5)  # binary tree with a height of five
>>> bqm = dimod.BinaryQuadraticModel('SPIN')
>>> bqm.set_linear(0, .5)
>>> for u, v in tree.edges:
...     bqm.set_quadratic(u, v, 1)

Because the BQM is a binary tree, it has a treewidth of 1 and can be solved exactly.

>>> sampleset = solver.sample(bqm)
>>> print(sampleset)
   0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 ... 62 energy num_oc.
0 -1 +1 +1 -1 -1 -1 -1 +1 +1 +1 +1 +1 +1 +1 +1 -1 -1 -1 ... +1  -62.5       1
['SPIN', 1 rows, 1 samples, 63 variables]

Installation

To install the core package:

pip install dwave-samplers

License

Released under the Apache License 2.0

Contributing

Ocean’s contributing guide has guidelines for contributing to Ocean packages.

Release Notes

dwave-samplers makes use of reno to manage its release notes.

When making a contribution to dwave-samplers that will affect users, create a new release note file by running

reno new your-short-descriptor-here

You can then edit the file created under releasenotes/notes/. Remove any sections not relevant to your changes. Commit the file along with your changes.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dwave_samplers-1.7.0.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

dwave_samplers-1.7.0-cp314-cp314t-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.14tWindows x86-64

dwave_samplers-1.7.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.17+ x86-64

dwave_samplers-1.7.0-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (8.9 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.17+ ARM64

dwave_samplers-1.7.0-cp314-cp314t-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.14tmacOS 11.0+ ARM64

dwave_samplers-1.7.0-cp314-cp314t-macosx_10_15_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.14tmacOS 10.15+ x86-64

dwave_samplers-1.7.0-cp314-cp314-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.14Windows x86-64

dwave_samplers-1.7.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ x86-64

dwave_samplers-1.7.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (8.7 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ ARM64

dwave_samplers-1.7.0-cp314-cp314-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.14macOS 11.0+ ARM64

dwave_samplers-1.7.0-cp314-cp314-macosx_10_15_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.14macOS 10.15+ x86-64

dwave_samplers-1.7.0-cp313-cp313-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.13Windows x86-64

dwave_samplers-1.7.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

dwave_samplers-1.7.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (8.7 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

dwave_samplers-1.7.0-cp313-cp313-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

dwave_samplers-1.7.0-cp313-cp313-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

dwave_samplers-1.7.0-cp312-cp312-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.12Windows x86-64

dwave_samplers-1.7.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

dwave_samplers-1.7.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (8.8 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

dwave_samplers-1.7.0-cp312-cp312-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

dwave_samplers-1.7.0-cp312-cp312-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

dwave_samplers-1.7.0-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11Windows x86-64

dwave_samplers-1.7.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (9.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

dwave_samplers-1.7.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (8.9 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

dwave_samplers-1.7.0-cp311-cp311-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

dwave_samplers-1.7.0-cp311-cp311-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

dwave_samplers-1.7.0-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10Windows x86-64

dwave_samplers-1.7.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

dwave_samplers-1.7.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (8.7 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

dwave_samplers-1.7.0-cp310-cp310-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

dwave_samplers-1.7.0-cp310-cp310-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

File details

Details for the file dwave_samplers-1.7.0.tar.gz.

File metadata

  • Download URL: dwave_samplers-1.7.0.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.12

File hashes

Hashes for dwave_samplers-1.7.0.tar.gz
Algorithm Hash digest
SHA256 aee1174f8353816c237e31f760796bca7d90f3e7b882aa2e80cf28a2f5def4c2
MD5 33f6910a8d992aef61b03276beac305d
BLAKE2b-256 64fcd296b32104227ece6354ed486bb0434f9138eb7815739a7018d12a73dcc4

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.7.0-cp314-cp314t-win_amd64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.7.0-cp314-cp314t-win_amd64.whl
Algorithm Hash digest
SHA256 539c1e577ea3bce7022a981e88ffa035284985b8208d6ec1f6cab74fb1191e82
MD5 ca533638996c12846874b2d6e994de47
BLAKE2b-256 5d0b713e7e629a5fad33cee8e3cd070754b2c0a771ffccbd31a22fae9d4f3434

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.7.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.7.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 f173a5dee29f351f2e8213e29aff32dde871585890ef53210a7271fd9ea42ec7
MD5 9fd0ff30c5d98ba7944a243e3310a772
BLAKE2b-256 a756464ee6e1c66ec92bb336b0eeaf93bd94c24572bd3553a4a6f2bfc3bc3412

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.7.0-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.7.0-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 b6410169886115fab1d0e52916d120ea7d0b7338fb6e11e4cc8dfa2f79022ef5
MD5 97a221294a65dcc2d926e5cad2f6c468
BLAKE2b-256 bded56bf4e6c35594464bfb9e38b5a790d78710706e099e6334e575d200109be

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.7.0-cp314-cp314t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.7.0-cp314-cp314t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7d59d3f38017441f464e1f0f2f12efa32b23a1c795a604040e61bad9b657c31e
MD5 35b745f713b060d700dbda63ccbf2f74
BLAKE2b-256 af3d2a090f3c0487c70a09075612682bd9f9631a84b086a05362dcddebd33792

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.7.0-cp314-cp314t-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.7.0-cp314-cp314t-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 fe811ebaffab70422e03393b8ca4b9f44c4e72e01e3f1b3f3818c50456baef2c
MD5 2851678af64fe78c551f3d5a61571782
BLAKE2b-256 5db69d28446f8046ad90f04ecd2cfd52469e7945e4ffed98bdce90c18693a2d8

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.7.0-cp314-cp314-win_amd64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.7.0-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 d6ea9d05e30c153f99c847b9bd27f58d5dd7d073fe955bba3af19a41ea766e70
MD5 5d0fe19927ef0e438015871d7e20f04b
BLAKE2b-256 30df7dc78ca31f55828ae59c5f20e397d3665979a12db7f0c49e5a2f994923c4

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.7.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.7.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 b6ed677c074ad6b769076cb3d36bae603f54ccc70f3f3ee1d5c361dec2d0124e
MD5 308d18baaf8243fe1e95f1e46fb8d706
BLAKE2b-256 d5781d1eb36a2c592cabb2075bd6adb7f7a8e6c01b055ff5699865d1cae8650e

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.7.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.7.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 47e2ef972830496794d47d485d60489d4c0ac2963116e16d0b95209038d600f9
MD5 7418a416e82c934e95e3edf0f0271442
BLAKE2b-256 e1acc06592622523278ba6b6e2fafbe2f5386434d605f43ab579d05b3e9aeab2

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.7.0-cp314-cp314-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.7.0-cp314-cp314-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 549d2cac098962577f2fc722fb1638dd8995e4d2144afc49a9c1ca569218ebde
MD5 b6a4d0b7c0f1243d86c20d49fef84813
BLAKE2b-256 5ed0a748c38346ef120b9c702a651a31c45a1cc3f0fa666fef179a4e64ffc9e1

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.7.0-cp314-cp314-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.7.0-cp314-cp314-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 1cca0fbd2bd0261841d0804ed63d382e7de6d6dbc42c00ac7f6078faf2dca69f
MD5 897e8861d05d44d1d103a8e34c3579f9
BLAKE2b-256 a90fe01597964178f39df8801983d2d88b9dbe5f38e7dd15417c6ea796a9c763

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.7.0-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.7.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 3399af6800418ab95d9560f5dc17c658246b3a645f65b5835e818ae510574c82
MD5 7ed2e481e4aea834dd54cbbc87f5d133
BLAKE2b-256 400368b0718fc4d3e03009c68daec69fd787ad28886d899afc6e636f3cc490d1

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.7.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.7.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 ca3434ebe105d5ec7b3a7bf840b88e7f6a8f89e01a981b2ba52d464b9cf4c7b4
MD5 169584ac72b93c5164599c8e3be058b9
BLAKE2b-256 136f9efb2f8f726891fdcf1b807a4498fe9eef914427bdc61cf0d2ce8a696c54

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.7.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.7.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 fe2f5d6b3045a30be6946442a9ee30621c06cff92a4b9641df9bc1550dfb6401
MD5 ac3381029d5e1ef29079fa9ecd70c991
BLAKE2b-256 2caeda17889d413809322d6fa3226bc7221b314577b21c6337a37049e397a3d5

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.7.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.7.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3ea2ac2d2152f1d0c2f029d6f360f6f292f71c493cbd05621b25ef48ef1aff53
MD5 ef4e41d1e6cf0e5721879c625810a803
BLAKE2b-256 2d573188a923cfa3b47ad00e6747408d2aa47aad245f489721d43d078ca49038

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.7.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.7.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 991c20db423bec9096d2932e8c9a3634c702518eb96d2f762fb3c7e26649241f
MD5 81291542741f4289d00607c39a2a431d
BLAKE2b-256 ee4bdc17844b387812106189223828b2b87b586f9bafa7231b39f4fc19286221

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.7.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.7.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f0584b542e63fa22dd5afd8b8f1538e9f0dfe146da475c7f2418e1e180e14828
MD5 b41182728f445df3d12a10405973e941
BLAKE2b-256 4179cc7c64720251897b68340e69c9c55fc876c93e68be33f50a8c5f2f3e3103

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.7.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.7.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 9230220b6ef7588250d870bf1c4dadf3805032dc121a2d8bf1c06e0642ed84e4
MD5 74dfba32269490d6779cb0ef4ba627c6
BLAKE2b-256 01aaa93b2565dd938e4a06104fb7f20b97b88fc0791e5d015bbc18e739438628

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.7.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.7.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 fa80ac4268aff33d8e623c38c61982adf94a9a1dc46a80cf00f23a7a7dd73a05
MD5 8c76388e86838ecc2713ca9f5c6ec2d1
BLAKE2b-256 57effa431cdffa4699112601b5e5d43f596b62479306ceda21d8c73bc51409e6

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.7.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.7.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 222f3f14a8b126c7bb4f5a5b7f46960595e38444829e9bf3824e679ee976636d
MD5 635317f321ac6bbe0d23afa1c5782d1f
BLAKE2b-256 463de74d2968350820c345f0f36218820a64f6e53a98db22cf2c103cbea761b0

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.7.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.7.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 f3906bdb4a1dfc3708ea8b9b96804912fe29ccc32385c94482cb3aac4ec3b965
MD5 e511a17d46ee805cc040c11dd4759d27
BLAKE2b-256 44ffea4f6e7dfe8166e1adb4131076cb5b7640c880b5eefda2b542db985a616c

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.7.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.7.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 35ede149562bb69954b68f6befc154122ca2a107feaeca82ef56bf3045b3d481
MD5 697c2af4f4b980ade7effb89b1d6dea4
BLAKE2b-256 fc446e7a9c34258f2bc9f8e1c91b4755611c7de0897495352c0adfbf76ea7a31

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.7.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.7.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 5451a43710f06a38d7011c906b6cb02a92c8ecc7c8bbf5cb2f7252f5bd78fb06
MD5 3b03628a8ea504d3bf3554abd63862aa
BLAKE2b-256 d32e87e01ad4ee8a163c8cee91c2f2520b3cd06f4db81002d7e094e11cd1669f

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.7.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.7.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 daaa98d2f8bc27f033a96dbd7eb7d93ee10e56f455024b220a546f2c5be91805
MD5 5715e516b99a0d0e124d12d647efdb47
BLAKE2b-256 9dc8fcc20a526eef557ea2fcec6f334b6f877502dc117898bd7a54aba0e659aa

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.7.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.7.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a64d4379ec63abd4ab72467ecddf189767398ad964c3c985518b9a4f1356dd3e
MD5 15745fc7083102d18197432bc77365f9
BLAKE2b-256 d9ab88396cfaaa1931c34c540954a6d86f4021e234cf9f04d7ad26d87857e724

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.7.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.7.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6c41b73be5f6c0c4974122a02f11283833c12e998487b5b721a8dc332e28442f
MD5 d554c36fd9b324bcd8d2f828028182a5
BLAKE2b-256 a3a6817b336af467e76ae11cf7b3ea87c512373a5b6ef968eac7083d13a6cd62

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.7.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.7.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 334ff26a61b93b814c2bccfa710d22ff39a20a9524636192650dadb915b08763
MD5 ba267be182d9df77b6c13ab7007c1c22
BLAKE2b-256 6a53487b39fc88e3a7a56d6a2fe02d4f44b6749e16aee8f4a6e6f1702736ac9f

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.7.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.7.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 f5450acdacd70fa781070a5d7e8e8b6653659a0b4b0152755dca5a612b41b0e4
MD5 237c9f0bda7392f8c861fbf85e941301
BLAKE2b-256 dabf776b7ad668cd56b90ff1a2d6ce0443271b505b33155fb5102b489eab2dc0

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.7.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.7.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 63a565651dea89865644af24aa27d29465e99a90739e406a2537d61e32905b48
MD5 41d46e1792d7ef5710e322ea38d8f6d2
BLAKE2b-256 0340c43c7d127fe88f1d220b1d532bf5c39834009b117745773764d24b3a3e12

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.7.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.7.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 88b418f8bd8467cc023fc7af1ed75952b47d015b31c385d21f20b2cb5c622dfe
MD5 7415e6b57aa7fa7a9eb418839f5877e8
BLAKE2b-256 bf74c3c1c2e151a6a94b05752ea0b9e7794355c742bcd12f268aedee49172c28

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.7.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.7.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0f2c3cb2110f9ec7bc599476cc232b1fa19f0dd198c23922f7ed92f5817facf3
MD5 b19c3f5adbc1d1c05c657f6aa9f0c567
BLAKE2b-256 a4d62b675bc7e872464eab1fc48562c0cfb40ff7e8583858f6ece7408337da3c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page