Skip to main content

Python wrapper for Data Explorer

Project description

A Pythonic Data Explorer.


For Python 3.8+:

pip install dx>=1.0.3


The dx library currently enables DEX media type visualization of pandas DataFrames in two ways:

  • individual calls to dx.display()
  • updating the current IPython display formatter for a session


import dx

With dx.display()

dx.display() will display a single dataset using the DEX media type. It currently supports:

  • pandas DataFrame objects

    import pandas as pd
    import random
    df = pd.DataFrame({
        'random_ints': [random.randint(0, 100) for _ in range(500)],
        'random_floats': [random.random() for _ in range(500)],

  • tabular data as dict or list types

      [1, 5, 10, 20, 500],
      [1, 2, 3, 4, 5],
      [0, 0, 0, 0, 1]

  • .csv or .json filepaths

With dx.register() and dx.deregister()

dx will update the current IPython display formatters to allow DEX media type visualization of pandas DataFrame objects for an entire notebook / kernel session instead of the default DataFrame display output.

Note: this only affects pandas DataFrames; it does not affect the display of .csv/.json file data, or dict/list outputs

  • dx.register()

    import pandas as pd
    # enable DEX display outputs from now on
    df = pd.read_csv("examples/sample_data.csv")
    df2 = pd.DataFrame(
            [1, 5, 10, 20, 500],
            [1, 2, 3, np.nan, 5],
            [0, 0, 0, np.nan, 1]
        columns=['a', 'b', 'c', 'd', 'e']

  • dx.deregister()

    df2 = pd.DataFrame(
            [1, 5, 10, 20, 500],
            [1, 2, 3, np.nan, 5],
            [0, 0, 0, np.nan, 1]
        columns=['a', 'b', 'c', 'd', 'e']


git clone
cd ./dx
pip install -e .

Code of Conduct

We follow the code of conduct.



Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dx-1.0.4.tar.gz (4.8 kB view hashes)

Uploaded source

Built Distribution

dx-1.0.4-py3-none-any.whl (5.8 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page