Skip to main content

Open-Source Optimization of Dynamic Multidisciplinary Systems

Project description

Dymos: Open Source Optimization of Dynamic Multidisciplinary Systems

Dymos Tests Coverage Status

DOI

Dymos is a framework for the simulation and optimization of dynamical systems within the OpenMDAO Multidisciplinary Analysis and Optimization environment. Dymos leverages implicit and explicit simulation techniques to simulate generic dynamic systems of arbitary complexity.

The software has two primary objectives:

  • Provide a generic ODE integration interface that allows for the analysis of dynamical systems.
  • Allow the user to solve optimal control problems involving dynamical multidisciplinary systems.

Installation

The default installation of the developmental version of Dymos will install the minimum number of prerequisites:

python -m pip install dymos

More advanced installation instructions are available here.

Citation

See our overview paper in the Journal of Open Source Software

If you use Dymos in your work, please cite:

@article{Falck2021,
  doi = {10.21105/joss.02809},
  url = {https://doi.org/10.21105/joss.02809},
  year = {2021},
  publisher = {The Open Journal},
  volume = {6},
  number = {59},
  pages = {2809},
  author = {Robert Falck and Justin S. Gray and Kaushik Ponnapalli and Ted Wright},
  title = {dymos: A Python package for optimal control of multidisciplinary systems},
  journal = {Journal of Open Source Software}
}

Documentation

Documentation for the current development version of Dymos is available at https://openmdao.github.io/dymos/ as well as on the OpenMDAO web site: https://openmdao.org/dymos/docs/latest/. Archived versions for recent releases will also be found here: https://openmdao.org/dymos-documentation/

Defining Ordinary Differential Equations

The first step in simulating or optimizing a dynamical system is to define the ordinary differential equations to be integrated. The user first builds an OpenMDAO model which has outputs that provide the rates of the state variables. This model can be an OpenMDAO model of arbitrary complexity, including nested groups and components, layers of nonlinear solvers, etc.

Dymos solutions are constructed of one or more Phases. When setting up a phase, we add state variables, dynamic controls, and parameters, tell Dymos how the value of each should be connected to the ODE system, and tell Dymos the variable paths in the system that contain the rates of our state variables that are to be integrated.

Integrating Ordinary Differential Equations

Dymos's solver-based pseudspectral transcriptions provide the ability to numerically integrate the ODE system it is given. Used in an optimal control context, these provide a shooting method in which each iteration provides a physically viable trajectory.

Pseudospectral Methods

Dymos currently supports the Radau Pseudospectral Method and high-order Gauss-Lobatto transcriptions. These implicit techniques rely on the optimizer to impose "defect" constraints which enforce the physical accuracy of the resulting trajectories. To verify the physical accuracy of the solutions, Dymos can explicitly integrate them using variable-step methods.

Solving Optimal Control Problems

Dymos uses the concept of Phases to support optimal control of dynamical systems. Users connect one or more Phases to construct trajectories. Each Phase can have its own:

  • Optimal Control Transcription (Gauss-Lobatto or Radau Pseudospectral)
  • Equations of motion
  • Boundary and path constraints

Dymos Phases and Trajectories are ultimately just OpenMDAO Groups that can exist in a problem along with numerous other models, allowing for the simultaneous optimization of systems and dynamics.

import numpy as np
import openmdao.api as om
import dymos as dm
import matplotlib.pyplot as plt

# First define a system which computes the equations of motion
class BrachistochroneEOM(om.ExplicitComponent):
    def initialize(self):
        self.options.declare('num_nodes', types=int)

    def setup(self):
        nn = self.options['num_nodes']

        # Inputs
        self.add_input('v', val=np.zeros(nn), units='m/s', desc='velocity')
        self.add_input('theta', val=np.zeros(nn), units='rad', desc='angle of wire')
        self.add_output('xdot', val=np.zeros(nn), units='m/s', desc='x rate of change')
        self.add_output('ydot', val=np.zeros(nn), units='m/s', desc='y rate of change')
        self.add_output('vdot', val=np.zeros(nn), units='m/s**2', desc='v rate of change')

        # Ask OpenMDAO to compute the partial derivatives using complex-step
        # with a partial coloring algorithm for improved performance
        self.declare_partials(of='*', wrt='*', method='cs')
        self.declare_coloring(wrt='*', method='cs', show_summary=True)

    def compute(self, inputs, outputs):
        v, theta = inputs.values()
        outputs['vdot'] = 9.80665 * np.cos(theta)
        outputs['xdot'] = v * np.sin(theta)
        outputs['ydot'] = -v * np.cos(theta)

p = om.Problem()

# Define a Trajectory object
traj = p.model.add_subsystem('traj', dm.Trajectory())

# Define a Dymos Phase object with GaussLobatto Transcription
tx = dm.GaussLobatto(num_segments=10, order=3)
phase = dm.Phase(ode_class=BrachistochroneEOM, transcription=tx)

traj.add_phase(name='phase0', phase=phase)

# Set the time options
phase.set_time_options(fix_initial=True,
                       duration_bounds=(0.5, 10.0))
# Set the state options
phase.set_state_options('x', rate_source='xdot',
                        fix_initial=True, fix_final=True)
phase.set_state_options('y', rate_source='ydot',
                        fix_initial=True, fix_final=True)
phase.set_state_options('v', rate_source='vdot',
                        fix_initial=True, fix_final=False)
# Define theta as a control.
phase.add_control(name='theta', units='rad',
                  lower=0, upper=np.pi)
# Minimize final time.
phase.add_objective('time', loc='final')

# Set the driver.
p.driver = om.ScipyOptimizeDriver()

# Allow OpenMDAO to automatically determine total
# derivative sparsity pattern.
# This works in conjunction with partial derivative
# coloring to give a large speedup
p.driver.declare_coloring()

# Setup the problem
p.setup()

# Now that the OpenMDAO problem is setup, we can guess the
# values of time, states, and controls.
phase.set_time_val(initial=0.0, duration=2.0)

# States and controls here use a linearly interpolated
# initial guess along the trajectory.
phase.set_state_val('x', [0, 10], units='m')
phase.set_state_val('y', [10, 5], units='m')
phase.set_state_val('v', [0, 5], units='m/s')

# constant initial guess for control
phase.set_control_val('theta', 90, units='deg')

# Run the driver to solve the problem and generate default plots of
# state and control values vs time
dm.run_problem(p, make_plots=True, simulate=True)

When using the make_plots=True option above, the output directory generated within the run directory will contain a file named reports/traj_results_report.html that should look similar to this:

Brachistochrone Solution

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dymos-1.14.0.tar.gz (548.6 kB view details)

Uploaded Source

Built Distribution

dymos-1.14.0-py3-none-any.whl (823.3 kB view details)

Uploaded Python 3

File details

Details for the file dymos-1.14.0.tar.gz.

File metadata

  • Download URL: dymos-1.14.0.tar.gz
  • Upload date:
  • Size: 548.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for dymos-1.14.0.tar.gz
Algorithm Hash digest
SHA256 b12eb2ab928dfadf4f5bc705918688c22bea40e40dcba59499879fce0467c105
MD5 e1f315c6ae4c2a081b37a825b0b415c9
BLAKE2b-256 83b84d3642835798fbdf0799dd85bf5454dc42ebbf48d2dfc1c38d54dfc0e95b

See more details on using hashes here.

Provenance

The following attestation bundles were made for dymos-1.14.0.tar.gz:

Publisher: dymos_release_workflow.yml on OpenMDAO/dymos

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file dymos-1.14.0-py3-none-any.whl.

File metadata

  • Download URL: dymos-1.14.0-py3-none-any.whl
  • Upload date:
  • Size: 823.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for dymos-1.14.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8bb0354aa60d3402ddfa732b51c88d3602101aec388b433df8eb1b0c3d62b341
MD5 736db47d730bd15bb4187d314618b7ca
BLAKE2b-256 fe8682d8a8ed21b5c4035ab4eb067da3803e5a0c1f30ac747a025149fcf4055a

See more details on using hashes here.

Provenance

The following attestation bundles were made for dymos-1.14.0-py3-none-any.whl:

Publisher: dymos_release_workflow.yml on OpenMDAO/dymos

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page