Equivariant convolutional neural networks for the group E(3) of 3 dimensional rotations, translations, and mirrors.
Project description
Euclidean neural networks
Documentation | Code | CHANGELOG | Colab
The aim of this library is to help the development of E(3) equivariant neural networks. It contains fundamental mathematical operations such as tensor products and spherical harmonics.
import torch
from e3nn import o3
# Create a random array made of scalar (0e) and a vector (1o)
irreps_in = o3.Irreps("0e + 1o")
x = irreps_in.randn(-1)
# Apply a linear layer
irreps_out = o3.Irreps("2x0e + 2x1o")
linear = o3.Linear(irreps_in=irreps_in, irreps_out=irreps_out)
y = linear(x)
# Compute a tensor product with itself
tp = o3.FullTensorProduct(irreps_in1=irreps_in, irreps_in2=irreps_in)
z = tp(x, x)
# Optionally compile the tensor product
tp_pt2 = torch.compile(tp, fullgraph=True)
z_pt2 = tp_pt2(x, x) # Warning: First few calls might be slow due to compilation
torch.testing.assert_close(z, z_pt2)
Installation
Important: install pytorch and only then run the command
pip install --upgrade pip
pip install --upgrade e3nn
For details and optional dependencies, see INSTALL.md
Breaking changes
e3nn is under development. It is recommended to install using pip. The main branch is considered as unstable. The second version number is incremented every time a breaking change is made to the code.
0.(increment when backwards incompatible release).(increment for backwards compatible release)
Help
We are happy to help! The best way to get help on e3nn is to submit a Question or Bug Report.
Want to get involved? Great!
If you want to get involved in and contribute to the development, improvement, and application of e3nn, introduce yourself in the discussions.
Code of conduct
Our community abides by the Contributor Covenant Code of Conduct.
Citing
If you use e3nn in your research, please cite the following papers:
Euclidean Neural Networks:
- N. Thomas et al., "Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds" (2018). arXiv:1802.08219
- M. Weiler et al., "3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data" (2018). arXiv:1807.02547
- R. Kondor et al., "Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network" (2018). arXiv:1806.09231
e3nn:
- M. Geiger and T. Smidt, "e3nn: Euclidean Neural Networks" (2022). arXiv:2207.09453
- M. Geiger et al., "Euclidean neural networks: e3nn" (2022). Zenodo
For BibTeX entries, please refer to the CITATION.bib file in this repository.
Copyright
Euclidean neural networks (e3nn) Copyright (c) 2020, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from the U.S. Dept. of Energy), Ecole Polytechnique Federale de Lausanne (EPFL), Free University of Berlin and Kostiantyn Lapchevskyi. All rights reserved.
If you have questions about your rights to use or distribute this software, please contact Berkeley Lab's Intellectual Property Office at IPO@lbl.gov.
NOTICE. This Software was developed under funding from the U.S. Department of Energy and the U.S. Government consequently retains certain rights. As such, the U.S. Government has been granted for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable, worldwide license in the Software to reproduce, distribute copies to the public, prepare derivative works, and perform publicly and display publicly, and to permit others to do so.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file e3nn-0.5.9.tar.gz.
File metadata
- Download URL: e3nn-0.5.9.tar.gz
- Upload date:
- Size: 438.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.2.0 CPython/3.11.14
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
1902e1f283d723748ce9e86b91573da4436ac110f40784851df890f75da86663
|
|
| MD5 |
fb60882ac5e84ea881c11ec5d4722308
|
|
| BLAKE2b-256 |
d178e16589ec1fd97019b914d806e94631eba476e82590e0675bd0402fa9ce08
|
File details
Details for the file e3nn-0.5.9-py3-none-any.whl.
File metadata
- Download URL: e3nn-0.5.9-py3-none-any.whl
- Upload date:
- Size: 450.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.2.0 CPython/3.11.14
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
3af2fe83e8d06d1b28c2f49860afff0e74daed94913bd39c340ac6ffb379df1a
|
|
| MD5 |
9b541c9593effbca079651eeed7d22cb
|
|
| BLAKE2b-256 |
936243c19edcf04b0efa0bc6b0059c6e34bd404d4ce9d249c160297939d670af
|