Skip to main content

LIMS/lab classes for clinicedc/edc projects

Project description

pypi actions codecov downloads

edc-lab

Add to settings:

INSTALLED_APPS = [
    ...
    'edc_lab.apps.AppConfig',
    ...
]

Configuration

Create aliquot types:

# aliquot types
wb = AliquotType(name='whole_blood', alpha_code='WB', numeric_code='02')
bc = AliquotType(name='buffy_coat', alpha_code='BC', numeric_code='16')
pl = AliquotType(name='plasma', alpha_code='PL', numeric_code='32')

Add possible derivatives to an aliquot type:

# in this case, plasma and buffy coat are possible derivatives
wb.add_derivatives(pl, bc)

Set up a processing profile:

viral_load = ProcessingProfile(
    name='viral_load', aliquot_type=wb)
process_bc = Process(aliquot_type=bc, aliquot_count=4)
process_pl = Process(aliquot_type=pl, aliquot_count=2)
viral_load.add_processes(process_bc, process_pl)

Create a``panel`` that uses the processing profile:

panel = RequisitionPanel(
    name='Viral Load',
    processing_profile=viral_load)

Add the panel (and others) to a lab profile:

lab_profile = LabProfile(
    name='lab_profile',
    requisition_model='edc_lab.subjectrequisition')
lab_profile.add_panel(panel)

Register the lab_profile with the site global:

site_labs.register(lab_profile)

Usage

Create a requisition model instance:

requisition = SubjectRequisition.objects.create(
    subject_visit=self.subject_visit,
    panel_name=self.panel.name,
    is_drawn=YES)

Pass the requisition to Specimen

specimen = Specimen(requisition=requisition)

Process:

specimen.process()

Aliquots have been created according to the configured processing profile:

>>> specimen.primary_aliquot.identifier
'99900GV63F00000201'

>>> for aliquot in specimen.aliquots.order_by('count'):
       print(aliquot.aliquot_identifier)
'99900GV63F00000201'
'99900GV63F02013202'
'99900GV63F02013203'
'99900GV63F02011604'
'99900GV63F02011605'
'99900GV63F02011606'
'99900GV63F02011607'

Project details


Release history Release notifications | RSS feed

This version

1.0.5

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edc_lab-1.0.5.tar.gz (83.0 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

edc_lab-1.0.5-py3-none-any.whl (133.5 kB view details)

Uploaded Python 3

File details

Details for the file edc_lab-1.0.5.tar.gz.

File metadata

  • Download URL: edc_lab-1.0.5.tar.gz
  • Upload date:
  • Size: 83.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.11

File hashes

Hashes for edc_lab-1.0.5.tar.gz
Algorithm Hash digest
SHA256 4b74075b69bb881cac26de32f1bc2132112bd2e4f9b655c552fdb2f4d617a3e3
MD5 20b94175384afe66b89c00c310843e11
BLAKE2b-256 e1ba244353d17b394ba5a76f7f3357cbd1a430e192c2094d8135d82d8cd50cba

See more details on using hashes here.

File details

Details for the file edc_lab-1.0.5-py3-none-any.whl.

File metadata

  • Download URL: edc_lab-1.0.5-py3-none-any.whl
  • Upload date:
  • Size: 133.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.11

File hashes

Hashes for edc_lab-1.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 1a7e9dceaa1c9fdb20f8b1c3366794f0998fe1c89bdca6ef88d6920e8586c5c6
MD5 20af19663ae91e32f60130c6a6d06d4c
BLAKE2b-256 c536f228834d30c73d8aa2446fc8d716e7f2bafef82c7170735f87c4caa0b036

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page