Skip to main content

Modular, fast NLP framework, compatible with Pytorch and spaCy, offering tailored support for French clinical notes.

Project description

Tests Documentation PyPI Demo Coverage DOI

EDS-NLP

EDS-NLP is a collaborative NLP framework that aims primarily at extracting information from French clinical notes. At its core, it is a collection of components or pipes, either rule-based functions or deep learning modules. These components are organized into a novel efficient and modular pipeline system, built for hybrid and multitask models. We use spaCy to represent documents and their annotations, and Pytorch as a deep-learning backend for trainable components.

EDS-NLP is versatile and can be used on any textual document. The rule-based components are fully compatible with spaCy's components, and vice versa. This library is a product of collaborative effort, and we encourage further contributions to enhance its capabilities.

Check out our interactive demo !

Features

Quick start

Installation

You can install EDS-NLP via pip. We recommend pinning the library version in your projects, or use a strict package manager like Poetry.

pip install edsnlp==0.20.0

or if you want to use the trainable components (using pytorch)

pip install "edsnlp[ml]==0.20.0"

A first pipeline

Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.

import edsnlp, edsnlp.pipes as eds

nlp = edsnlp.blank("eds")

terms = dict(
    covid=["covid", "coronavirus"],
)

# Split the documents into sentences, this isneeded for negation detection
nlp.add_pipe(eds.sentences())
# Matcher component
nlp.add_pipe(eds.matcher(terms=terms))
# Negation detection (we also support spacy-like API !)
nlp.add_pipe("eds.negation")

# Process your text in one call !
doc = nlp("Le patient n'est pas atteint de covid")

doc.ents
# Out: (covid,)

doc.ents[0]._.negation
# Out: True

Documentation & Tutorials

Go to the documentation for more information.

Disclaimer

The performances of an extraction pipeline may depend on the population and documents that are considered.

Contributing to EDS-NLP

We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.

Citation

If you use EDS-NLP, please cite us as below.

@misc{edsnlp,
  author = {Wajsburt, Perceval and Petit-Jean, Thomas and Dura, Basile and Cohen, Ariel and Jean, Charline and Bey, Romain},
  doi    = {10.5281/zenodo.6424993},
  title  = {EDS-NLP: efficient information extraction from French clinical notes},
  url    = {https://aphp.github.io/edsnlp}
}

Acknowledgement

We would like to thank Assistance Publique – Hôpitaux de Paris, AP-HP Foundation and Inria for funding this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edsnlp-0.20.0.tar.gz (1.7 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

edsnlp-0.20.0-cp313-cp313-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.13Windows x86-64

edsnlp-0.20.0-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

edsnlp-0.20.0-cp313-cp313-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

edsnlp-0.20.0-cp313-cp313-macosx_10_13_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

edsnlp-0.20.0-cp312-cp312-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.12Windows x86-64

edsnlp-0.20.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

edsnlp-0.20.0-cp312-cp312-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

edsnlp-0.20.0-cp312-cp312-macosx_10_13_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

edsnlp-0.20.0-cp311-cp311-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.11Windows x86-64

edsnlp-0.20.0-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

edsnlp-0.20.0-cp311-cp311-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

edsnlp-0.20.0-cp311-cp311-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

edsnlp-0.20.0-cp310-cp310-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.10Windows x86-64

edsnlp-0.20.0-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

edsnlp-0.20.0-cp310-cp310-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

edsnlp-0.20.0-cp310-cp310-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

File details

Details for the file edsnlp-0.20.0.tar.gz.

File metadata

  • Download URL: edsnlp-0.20.0.tar.gz
  • Upload date:
  • Size: 1.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.25

File hashes

Hashes for edsnlp-0.20.0.tar.gz
Algorithm Hash digest
SHA256 ee0b0dfae7e523feefbe46dfe8576b20881d18edb77b965a9cd32853cc2a7710
MD5 f26fe96f1dac5683dac842af1e4b4491
BLAKE2b-256 a90b7a0d089cb0a1d0c9dd050b94dee51a0d09a487729ffd5a9963836a76652a

See more details on using hashes here.

File details

Details for the file edsnlp-0.20.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.20.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.25

File hashes

Hashes for edsnlp-0.20.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 114e5d39461a09f27e6efea1eab265e6144e1b8ec4403b8723fb5471d6fbc2c1
MD5 f02edf1ceee944d1f1aab8811a2c6857
BLAKE2b-256 e6b984ec350e7abaca800d41c9cf7a66465eb162dd41e35cbd3f80986fd215f6

See more details on using hashes here.

File details

Details for the file edsnlp-0.20.0-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.20.0-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 3101efe7a9c7eca6710afd3c8c3911387278d15c1d9c0370da560cbd3bafbfd7
MD5 0db452729525cb64f7201ad42bc838b8
BLAKE2b-256 822c98ef66313774fd1d26653562dddca31fb7b3cc7bf2fdd2dfba38ccc64aae

See more details on using hashes here.

File details

Details for the file edsnlp-0.20.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.20.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2e055b4e093c9b56b443bf582819904ec0672a10f8348957eb1313dace09c08d
MD5 c72bfcb67055c47337a690621d33a164
BLAKE2b-256 2d81f8730df6071963580c92d1a15730663c0b8c1b1095f60c28d5acefca7445

See more details on using hashes here.

File details

Details for the file edsnlp-0.20.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.20.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ac05b556d13c639725062d328c3c6e26c743154ae17c6159c8abfe6e1424946c
MD5 bb7a1675d64f006d1bebf09b307921a7
BLAKE2b-256 9cd67a4f9d6a51958260ea5548a1d2c07175700615e06a5b5bb7fd073439b745

See more details on using hashes here.

File details

Details for the file edsnlp-0.20.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.20.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.25

File hashes

Hashes for edsnlp-0.20.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 cf510e08c4920fef65f04d6a6580d90546f70f5fc4feffd474df645a4a1f2358
MD5 f4f959434fbd557e8d236465b176174d
BLAKE2b-256 75f9cd9ff69605ef0eecbf2f0b19377bb848e0207d7936f574c934b9cacea671

See more details on using hashes here.

File details

Details for the file edsnlp-0.20.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.20.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 aedac034623e54d5f33d011f3b122f3a9028a3c7d0546b373cf1e117e15b090c
MD5 22f6c48511eb313d267f66f742d4b791
BLAKE2b-256 f4322f7bb8d11b14bd5b1be14efe1d6447d9395a9e85bb47122377248608b542

See more details on using hashes here.

File details

Details for the file edsnlp-0.20.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.20.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a31cb8b343bfe0c692905a89c408b046f8affbb0d65654a57796971b83a130a4
MD5 1cc9fc19e3b1c1c9a1a134fa7cd37956
BLAKE2b-256 fa3a4e48069b109c5b6b1566e0df48ec286ceeeeba22d75eb6b53cfa8c7c1cd4

See more details on using hashes here.

File details

Details for the file edsnlp-0.20.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.20.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 3a1df70e5064a42ab4cad67715cfb9bd21556fe4325f2ccea28880b4199f056b
MD5 911d06879b39543b3cfc495f206b7915
BLAKE2b-256 9e1ad6eee92806603ba8c4c2153970d8074c2e1b4ccbe6b74ae46e24b0692196

See more details on using hashes here.

File details

Details for the file edsnlp-0.20.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.20.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.25

File hashes

Hashes for edsnlp-0.20.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0afa105d48dbd6e78ef639dcc5663173c81ca9bd7d43ffed0634308aecd4668b
MD5 728a3e2a5e2b4d8846b47586b6117b98
BLAKE2b-256 8000acd1160f95475e060f0ab4adcac86eba19a2291dbeb18d47ba820cac9c15

See more details on using hashes here.

File details

Details for the file edsnlp-0.20.0-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.20.0-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 e347fd1e35401a44ff5c90a7ef8223e81596294ebe369f63e2fbc2faf9b5c3c2
MD5 2ce8af8c083c6fa348359acfeeca8fcf
BLAKE2b-256 92169338e48caa20b615c4aa2efe03d0decf981bde2fea0cb62a1e9762f55fc7

See more details on using hashes here.

File details

Details for the file edsnlp-0.20.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.20.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f43fddadeb4a20b15b4adc5810532473b13045c849fb695b79ff22d67c447c0f
MD5 22573daf7e14dc8790fd1bb2c1a87aef
BLAKE2b-256 6e2b5f43b970b835b19fcfe3a63369cbfcab83ebe8237c2709db818e0ae0cf37

See more details on using hashes here.

File details

Details for the file edsnlp-0.20.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.20.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2beae6fa823ecdd272e64b210df14ca357f678851647b18b1380cc3256eb883f
MD5 d2f86547cfa3cbca73615edb8d085fad
BLAKE2b-256 6643c8db760103ef86b3bf68db6faa5e2179837aee93eebb664c2426b91e404b

See more details on using hashes here.

File details

Details for the file edsnlp-0.20.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.20.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.25

File hashes

Hashes for edsnlp-0.20.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2056e25180fda5517660f0b1086ef3f218580d5a7236cc3047e7b575278be032
MD5 7c0a3b14963d8a46a707572cdb1fb1d0
BLAKE2b-256 4662272650b39a6a0f7aebfa1686a2924165774fc6175de93e0e4549a8c49f4b

See more details on using hashes here.

File details

Details for the file edsnlp-0.20.0-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.20.0-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 47b596b4315b44d93ca6a079584b6703c19dd84d4f173291ac105bb95a5c7d2b
MD5 294cd81c8dd861f18fd3eda80aa89b79
BLAKE2b-256 4b90abffe1554a28d9288ff2f95432ff93e89be16a57a7b4e19024f409dc7eb8

See more details on using hashes here.

File details

Details for the file edsnlp-0.20.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.20.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d7d7cc09e400371962e98a0c0f7d93176dd5a9ed36ada95f6a5d20f1a80e4b83
MD5 f6666b34ba58b7e7c68d9f01f30816a8
BLAKE2b-256 d134e3bcf65bba8b7bf20c1c96a133023887796b6a93bdeaaafcf8f289152860

See more details on using hashes here.

File details

Details for the file edsnlp-0.20.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.20.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b6e4ed6b97e9966e433a0310be17c7b00f78c1efce1dc74cabd7f462e3017ce4
MD5 40a54c71559cba0dc4dd0a26f870ee66
BLAKE2b-256 87e7eb01969e8bea3964ab9d75faab56dfca7895df3171704597b411d039b760

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page