Skip to main content

Modular, fast NLP framework, compatible with Pytorch and spaCy, offering tailored support for French clinical notes.

Project description

Tests Documentation PyPI Demo Coverage DOI

EDS-NLP

EDS-NLP is a collaborative NLP framework that aims primarily at extracting information from French clinical notes. At its core, it is a collection of components or pipes, either rule-based functions or deep learning modules. These components are organized into a novel efficient and modular pipeline system, built for hybrid and multitask models. We use spaCy to represent documents and their annotations, and Pytorch as a deep-learning backend for trainable components.

EDS-NLP is versatile and can be used on any textual document. The rule-based components are fully compatible with spaCy's components, and vice versa. This library is a product of collaborative effort, and we encourage further contributions to enhance its capabilities.

Check out our interactive demo !

Features

Quick start

Installation

You can install EDS-NLP via pip. We recommend pinning the library version in your projects, or use a strict package manager like Poetry.

pip install edsnlp==0.17.2

or if you want to use the trainable components (using pytorch)

pip install "edsnlp[ml]==0.17.2"

A first pipeline

Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.

import edsnlp, edsnlp.pipes as eds

nlp = edsnlp.blank("eds")

terms = dict(
    covid=["covid", "coronavirus"],
)

# Split the documents into sentences, this isneeded for negation detection
nlp.add_pipe(eds.sentences())
# Matcher component
nlp.add_pipe(eds.matcher(terms=terms))
# Negation detection (we also support spacy-like API !)
nlp.add_pipe("eds.negation")

# Process your text in one call !
doc = nlp("Le patient n'est pas atteint de covid")

doc.ents
# Out: (covid,)

doc.ents[0]._.negation
# Out: True

Documentation & Tutorials

Go to the documentation for more information.

Disclaimer

The performances of an extraction pipeline may depend on the population and documents that are considered.

Contributing to EDS-NLP

We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.

Citation

If you use EDS-NLP, please cite us as below.

@misc{edsnlp,
  author = {Wajsburt, Perceval and Petit-Jean, Thomas and Dura, Basile and Cohen, Ariel and Jean, Charline and Bey, Romain},
  doi    = {10.5281/zenodo.6424993},
  title  = {EDS-NLP: efficient information extraction from French clinical notes},
  url    = {https://aphp.github.io/edsnlp}
}

Acknowledgement

We would like to thank Assistance Publique – Hôpitaux de Paris, AP-HP Foundation and Inria for funding this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edsnlp-0.17.2.tar.gz (1.7 MB view details)

Uploaded Source

Built Distributions

edsnlp-0.17.2-cp312-cp312-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.12Windows x86-64

edsnlp-0.17.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

edsnlp-0.17.2-cp312-cp312-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

edsnlp-0.17.2-cp312-cp312-macosx_10_13_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

edsnlp-0.17.2-cp311-cp311-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.11Windows x86-64

edsnlp-0.17.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

edsnlp-0.17.2-cp311-cp311-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

edsnlp-0.17.2-cp311-cp311-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

edsnlp-0.17.2-cp310-cp310-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.10Windows x86-64

edsnlp-0.17.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

edsnlp-0.17.2-cp310-cp310-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

edsnlp-0.17.2-cp310-cp310-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

edsnlp-0.17.2-cp39-cp39-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.9Windows x86-64

edsnlp-0.17.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

edsnlp-0.17.2-cp39-cp39-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

edsnlp-0.17.2-cp39-cp39-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

edsnlp-0.17.2-cp38-cp38-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.8Windows x86-64

edsnlp-0.17.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

edsnlp-0.17.2-cp38-cp38-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

edsnlp-0.17.2-cp38-cp38-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

edsnlp-0.17.2-cp37-cp37m-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.7mWindows x86-64

edsnlp-0.17.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

edsnlp-0.17.2-cp37-cp37m-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

File details

Details for the file edsnlp-0.17.2.tar.gz.

File metadata

  • Download URL: edsnlp-0.17.2.tar.gz
  • Upload date:
  • Size: 1.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for edsnlp-0.17.2.tar.gz
Algorithm Hash digest
SHA256 453ea2b15a44ce67188745518ea99a2cb943cf43f6c7b8332e8e5de53ad1444f
MD5 7ef05c1d5f9d2adc375af18d94472dc1
BLAKE2b-256 4472a375f746103ea8a591658a24d27d0af85ef5cb940eeabee514579229b31d

See more details on using hashes here.

File details

Details for the file edsnlp-0.17.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.17.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for edsnlp-0.17.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 7f23221f3ce4a967caba449f98528e6aafbcb5b3df368a896a25b014e148799a
MD5 7b6b6d6643d86b5ee99b5b715780de48
BLAKE2b-256 007aeb1d3bb8335d2d1466a3e9b4876cab23abc70895d7f7a34ea5c5aba5edac

See more details on using hashes here.

File details

Details for the file edsnlp-0.17.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.17.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9f034930b81d3ee0deebee23b2ea872f6fcc7d5abaf4fa20a6e8dbe2f5357cfc
MD5 5f70ba13cae4720139fdb8da2c46f98c
BLAKE2b-256 a79f8440e5b4db54b38b2590473592d6e3655db6ead8d35736ace21d0a055715

See more details on using hashes here.

File details

Details for the file edsnlp-0.17.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.17.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ee3cb8d319d9ed7dd7363a5addd17498344189032393cf7fc467d6ad1bd2b287
MD5 0a818a59386a6717f01b3a2b6d78bdba
BLAKE2b-256 79ce64c1266d5b8fe4f5aacb6cab81a8580e272756eaf89e13c3ecc4ea741269

See more details on using hashes here.

File details

Details for the file edsnlp-0.17.2-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.17.2-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 a9414f7e995cefd710845da1726f76d6c8683186a04c192254bd7adf2015dfd5
MD5 1803176d2473bf5c08631cc13ae768c7
BLAKE2b-256 6a38abea2208361c70a8664eb036f35d6c88f69cc0a92084f41099f760d387c1

See more details on using hashes here.

File details

Details for the file edsnlp-0.17.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.17.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for edsnlp-0.17.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ac2703106fa7eb4977a2cfc64732324bfef40550dacb71c8f3b829992e43f3dc
MD5 b5ada08f499176c81d8a338bd3ce60ab
BLAKE2b-256 8be439c304537977ee23cb68901fcb5066dd9c5d22e882196c94b3a9449bc2b0

See more details on using hashes here.

File details

Details for the file edsnlp-0.17.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.17.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9fdfbd0efcafd37bc01cd8b3cde6af5cf13053e5f280d189a440236ed0f1d1ef
MD5 1e7b66a63a8a1240b13d533122c7e9d3
BLAKE2b-256 0209155a9e975bb9a396acb0e8c082740d2359b98827414c8e32a89f11a4bc9f

See more details on using hashes here.

File details

Details for the file edsnlp-0.17.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.17.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e4c392f5a0ee4143ac95ca8de884ce99979aac832bfedd1f21aa3d0d804e2d3d
MD5 20f7337ce713decf83ec34ab8621e4a3
BLAKE2b-256 bd7bb91f6070a4088826d2b4fedbcc8e6c0a2c3a912527cb852c73aa90cbb57d

See more details on using hashes here.

File details

Details for the file edsnlp-0.17.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.17.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c76efe403d84ba94eab45b69fd5300b51de9c9a920bfa933374d3efa499ae616
MD5 cd6e4a437cc8bdb370ffc500eac655b6
BLAKE2b-256 5a7836f857ef8a5ce35ce32153194cd6849dcc0221b966f990874a8f8fc10f27

See more details on using hashes here.

File details

Details for the file edsnlp-0.17.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.17.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for edsnlp-0.17.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e0a550db5475ed5d0f2f3a26d52dbf2858b1c7148aa9249e0073d915a618020d
MD5 6aa18c974b812a55b58edbe46e801783
BLAKE2b-256 1bb17ed541ffd4c90fdfb944d4c0ecfb651ebfe24ce0c79b27c75aaeed948777

See more details on using hashes here.

File details

Details for the file edsnlp-0.17.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.17.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 249a2763e92600903ef352577dd1a394f8ecc7848608e9f097a89e10f9743d09
MD5 b9475ec597216cbe4dd1d74001b2fb1d
BLAKE2b-256 ff123b65029e2ecc96aa9a0133c56ed5b3230d793fcea7f4e8618878a1d31cc0

See more details on using hashes here.

File details

Details for the file edsnlp-0.17.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.17.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 83522936c23532800cc37c4d6ed5647aca8ccc2fe1c68c7a52e630f70ee3ece7
MD5 7994a2a89e2a0b5f647849f82db81962
BLAKE2b-256 000cf7320c2d112284573f7c9d77712e719384dd2d959909354f0b9a5e55fc97

See more details on using hashes here.

File details

Details for the file edsnlp-0.17.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.17.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 85acc9b67b183b784e02de2275e721adcd9d6fa452da58520ffb39b11e39e6f1
MD5 781afe67657646e393f1fd4def84dfcb
BLAKE2b-256 b83b164dd9846d4bb713c2c4e74294dd51112d5799c2dd500b1afd988cef8513

See more details on using hashes here.

File details

Details for the file edsnlp-0.17.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.17.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for edsnlp-0.17.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 00ea9ec15d5a6054eedf96eb8bb940bbe488c6c6d859edf3ee4c9a0fe5a6e384
MD5 8757c47fb61fc602af3c15c2ca0fd0be
BLAKE2b-256 7811f6570cbe6a5e0c9e6ba5344184573c0cf634be65f3c11f5297d46fed7b92

See more details on using hashes here.

File details

Details for the file edsnlp-0.17.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.17.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 60674e4f84614bdd676fc18fc78e838b3188eb66538d9e89a03c28250bf812b2
MD5 8dfc6fa737ad4db4fa8abe2ba0838359
BLAKE2b-256 778d8a0ebddd252e8d48ff408c99de720797b5321f25a8f54e2ab99b9bd5918a

See more details on using hashes here.

File details

Details for the file edsnlp-0.17.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.17.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 aaa488079fc27820df1b072870347b07d6805806f6eedc016c7783ffb35039b3
MD5 3a509dfd40e7974b1b1d80d69c3d99cc
BLAKE2b-256 2c5103c397d453a48e0f29d489b3e00e99791d680dd5140853415d40a1780ab7

See more details on using hashes here.

File details

Details for the file edsnlp-0.17.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.17.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c7385eeabe7baa7a7c21d8f97fe778daca56702c4810ca716f87ff03777b1b38
MD5 f7f855af820a01355b88259a3aa4c5fb
BLAKE2b-256 7599b408dbb9daf619268a70f2b095a948f296dcb6704b652e1fbffe0c8d54cd

See more details on using hashes here.

File details

Details for the file edsnlp-0.17.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.17.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for edsnlp-0.17.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6a9e29a7218fab57a9ec9e44f2eb6265247f777143a6a22b6e492109ae4aeb79
MD5 f78e84facf3d03807c47dadc8d895900
BLAKE2b-256 b1921ba3ecbd29b6b1fe7f4d46440f9f15d46ca937f4cf1a265a8bf9421a233a

See more details on using hashes here.

File details

Details for the file edsnlp-0.17.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.17.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3e301644988ec8deadb356369f6d0e89aa2c85edb0442290887b64faff7d69c2
MD5 b833adf1032fec52dfa660afeeef9dfa
BLAKE2b-256 338181cf095adec75b1cfca55120e2977fd96351759ff1d0c6e87694628e3dc3

See more details on using hashes here.

File details

Details for the file edsnlp-0.17.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for edsnlp-0.17.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cfee3234a4bd07a58112d0d321579a2f3954ef6f8f37d5adeaeee2d89fb58a77
MD5 bd7c83b42aee2253bfb0f42556cd86d8
BLAKE2b-256 c1965c3adb468e184efa0371be4f134ebbded870ad142a615bc508e6cd67e119

See more details on using hashes here.

File details

Details for the file edsnlp-0.17.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.17.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9f6fc8b1320e665a9a0761d83bd5bb4ed12b375d0492a48edd27e4254bbffa75
MD5 7a7fe02bf02809295642be4ef14004ac
BLAKE2b-256 f582334434735ca97aa1a3bbe5c5f2de966a22edbe140a6f7e0c10d60e257c76

See more details on using hashes here.

File details

Details for the file edsnlp-0.17.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.17.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for edsnlp-0.17.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d6a763923e2305edc63706c9a051c5ab90258bc6a4eb5678d331a44a05895917
MD5 229ff2adb524bcba2d80059a0b1fadfe
BLAKE2b-256 9cc754b344b15820058e42412b26a4b24e7fb6392359afe43ba270100431edfe

See more details on using hashes here.

File details

Details for the file edsnlp-0.17.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.17.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9b52c5e77887f1b892eb9beda028222612f792f76641242e673e00fe132ca8dd
MD5 2bfb632cf30cf3fff9b3243483a46a0e
BLAKE2b-256 f43946d08deb7842af68a01337ba0b8a4584f65c639fb55cc41657907347f23b

See more details on using hashes here.

File details

Details for the file edsnlp-0.17.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.17.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4e90790345af0a369dec6a3f8ee9867552424eb61c22c84399adb3b2a6fd862b
MD5 704e85aca17a0134d606a65366afe0a0
BLAKE2b-256 dad6c049988e4001588afe3bcf907dfc8a74447612c74175f191a92e6248638e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page