Pretrained Pytorch model file for EfficientNet Lite2
Project description
efficientnet-lite2-pytorch-model
Pretrained Pytorch model file for EfficientNet Lite2
Installation
pip install efficientnet_lite2_pytorch_model
Basic Usage
from efficientnet_lite2_pytorch_model import EfficientnetLite2ModelFile
print( 'model file path is %s' % ( EfficientnetLite2ModelFile.get_model_file_path() ) )
Actual Usage
Install the model package from EfficientNet-Lite-PyTorch:
pip install efficientnet_lite_pytorch
Load the model with pretrained weights:
from efficientnet_lite_pytorch import EfficientNet
from efficientnet_lite2_pytorch_model import EfficientnetLite2ModelFile
weights_path = EfficientnetLite2ModelFile.get_model_file_path()
lite2_model = EfficientNet.from_pretrained('efficientnet-lite2', weights_path = weights_path )
Credits
This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage
project template.
- Cookiecutter: https://github.com/audreyr/cookiecutter
audreyr/cookiecutter-pypackage
: https://github.com/audreyr/cookiecutter-pypackagecookiecutter-ml-model-files
: https://github.com/ml-illustrated/cookiecutter-ml-model-files
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Close
Hashes for efficientnet_lite2_pytorch_model-0.1.0.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 72a51c32885edde368e157f3f6f6e6bc7cc1c49fad0a9d65b5dadfbba5713806 |
|
MD5 | 66fdf9aa53e6452a9c0f27db1f66327e |
|
BLAKE2b-256 | 5530a1b71bc030ae73431ddbae10f5ccc3065437e970b05e9c96e197c6463e72 |
Close
Hashes for efficientnet_lite2_pytorch_model-0.1.0-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a7f2cb09a4df088b53335217edd30c54d1b8ab1e844b3f4e204fe3ff4663922d |
|
MD5 | 4c1c808905da50b08b8049116fc0b15c |
|
BLAKE2b-256 | 4c80ada7a6a6cf339c642a108474ffe169483d57fea24f0ef8915a2c41a8f0a6 |