Skip to main content

Bindings between Numpy and Eigen using Boost.Python

Project description

EigenPy — Efficient Python bindings between Numpy/Eigen

License Build Status Conda Downloads Conda Version PyPI version Code style: black

EigenPy is an open source framework which allows to bind the famous Eigen C++ library in Python.

EigenPy provides:

  • full memory sharing between Numpy and Eigen avoiding memory allocation
  • full support Eigen::Ref avoiding memory allocation
  • exposition of the Geometry module of Eigen for easy code prototyping
  • standard matrix decomposion routines of Eigen such as the Cholesky decomposition, SVD decomposition, QR decomposition, and etc.
  • full support of SWIG objects

Setup

The installation of EigenPy on your computer is made easy for Linux/BSD, Mac OS X and Windows environments.

The Conda approach

You simply need this simple line:

conda install eigenpy -c conda-forge

Ubuntu

You can easily install EigenPy from binairies.

Add robotpkg apt repository

  1. Add robotpkg as source repository to apt:
sudo sh -c "echo 'deb [arch=amd64] http://robotpkg.openrobots.org/packages/debian/pub $(lsb_release -cs) robotpkg' >> /etc/apt/sources.list.d/robotpkg.list"
  1. Register the authentication certificate of robotpkg:
curl http://robotpkg.openrobots.org/packages/debian/robotpkg.key | sudo apt-key add -
  1. You need to run at least once apt update to fetch the package descriptions:
sudo apt-get update

Install EigenPy

  1. The installation of EigenPy and its dependencies is made through the line:

For Python 2.7

sudo apt install robotpkg-py27-eigenpy

or for Python 3.{5,6,7}

sudo apt install robotpkg-py35-eigenpy

where 35 should be replaced by the python 3 you want to work this (e.g. robotpkg-py36-eigenpy to work with Python 3.6).

Mac OS X

The installation of EigenPy on Mac OS X is made via HomeBrew. You just need to register the tap of the sofware repository.

brew tap gepetto/homebrew-gepetto

and then install EigenPy for Python 3.x with:

brew install eigenpy

Credits

The following people have been involved in the development of EigenPy:

If you have taken part to the development of EigenPy, feel free to add your name and contribution here.

Acknowledgments

The development of EigenPy is supported by the Gepetto team @LAAS-CNRS and the Willow team @INRIA.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

eigenpy-2.8.1-0-pp39-pypy39_pp73-manylinux_2_17_x86_64.whl (2.5 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

eigenpy-2.8.1-0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (2.3 MB view details)

Uploaded PyPymacOS 10.9+ x86-64

eigenpy-2.8.1-0-pp38-pypy38_pp73-manylinux_2_17_x86_64.whl (2.5 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

eigenpy-2.8.1-0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (2.3 MB view details)

Uploaded PyPymacOS 10.9+ x86-64

eigenpy-2.8.1-0-pp37-pypy37_pp73-manylinux_2_17_x86_64.whl (2.5 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

eigenpy-2.8.1-0-pp37-pypy37_pp73-macosx_12_0_x86_64.whl (2.3 MB view details)

Uploaded PyPymacOS 12.0+ x86-64

eigenpy-2.8.1-0-cp311-cp311-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

eigenpy-2.8.1-0-cp311-cp311-manylinux_2_28_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ ARM64

eigenpy-2.8.1-0-cp311-cp311-manylinux_2_17_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

eigenpy-2.8.1-0-cp311-cp311-macosx_10_9_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

eigenpy-2.8.1-0-cp310-cp310-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

eigenpy-2.8.1-0-cp310-cp310-manylinux_2_28_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ ARM64

eigenpy-2.8.1-0-cp310-cp310-manylinux_2_17_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

eigenpy-2.8.1-0-cp310-cp310-macosx_10_9_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

eigenpy-2.8.1-0-cp39-cp39-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

eigenpy-2.8.1-0-cp39-cp39-manylinux_2_28_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ ARM64

eigenpy-2.8.1-0-cp39-cp39-manylinux_2_17_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

eigenpy-2.8.1-0-cp39-cp39-macosx_10_9_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

eigenpy-2.8.1-0-cp38-cp38-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ x86-64

eigenpy-2.8.1-0-cp38-cp38-manylinux_2_28_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.28+ ARM64

eigenpy-2.8.1-0-cp38-cp38-manylinux_2_17_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

eigenpy-2.8.1-0-cp38-cp38-macosx_10_9_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

eigenpy-2.8.1-0-cp37-cp37m-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.7mmusllinux: musl 1.1+ x86-64

eigenpy-2.8.1-0-cp37-cp37m-manylinux_2_28_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.28+ ARM64

eigenpy-2.8.1-0-cp37-cp37m-manylinux_2_17_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

eigenpy-2.8.1-0-cp37-cp37m-macosx_10_16_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7mmacOS 10.16+ x86-64

File details

Details for the file eigenpy-2.8.1-0-pp39-pypy39_pp73-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for eigenpy-2.8.1-0-pp39-pypy39_pp73-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 81e10b0dfdb8ca2d875dd735cdd8aedd9249fa496b031b7fe4bcd2f4c2210369
MD5 c4575ebfd8afc828a62e983e9304129b
BLAKE2b-256 d2f36fcaba311e37d4656ed3a989de6c00be5230a354ed1b28b0c79d6dc5afb0

See more details on using hashes here.

File details

Details for the file eigenpy-2.8.1-0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for eigenpy-2.8.1-0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 28894d9fe0bab5ee2d478433887b3409bc033d74223b5e40eb0feed049e17e47
MD5 25b06f470fb013e075523a9aa3fe754a
BLAKE2b-256 a4b1a69ef1671fa3303616f0bc5e15b1000fef8437ca5aa5c408bc145071c4b3

See more details on using hashes here.

File details

Details for the file eigenpy-2.8.1-0-pp38-pypy38_pp73-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for eigenpy-2.8.1-0-pp38-pypy38_pp73-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 bcd01188243d82893f66b1d0320863d92ce68956aa766afe7cf9bf0069935864
MD5 5f11b560d4e2ea91416d08b246a0f2f3
BLAKE2b-256 296dcd49b716a4843cc823fb9491d83b93e81035f0947ab544795eb148a7a549

See more details on using hashes here.

File details

Details for the file eigenpy-2.8.1-0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for eigenpy-2.8.1-0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3679b08d7601dc6f7b903caf7d46d2dde486dd22950ed489b704a270a79fa859
MD5 3be24956986d09fea6a301e29b8e5f66
BLAKE2b-256 39531a6d495aa1ef163ba90af62b72d834c48d64dafd08a27af8f2352e7776f9

See more details on using hashes here.

File details

Details for the file eigenpy-2.8.1-0-pp37-pypy37_pp73-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for eigenpy-2.8.1-0-pp37-pypy37_pp73-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 4926904e92e647a53571f0c9dadcb42db40d8ba38cd6e715f2ffc7628ae439df
MD5 cb57bd8bfd0ecf9ad285b246b901cb5f
BLAKE2b-256 aa49c5a91406ddfc324293440b2fcf6903c050081c7e729b33edef1af2a16921

See more details on using hashes here.

File details

Details for the file eigenpy-2.8.1-0-pp37-pypy37_pp73-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for eigenpy-2.8.1-0-pp37-pypy37_pp73-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 63452a2d4c7b68385ef6bbe87d176e202602b25d8e91d12a816848910e0ddbbd
MD5 9928948629e1b336366b92842396a7de
BLAKE2b-256 1efa3a5a57471212020fedcb5b5e43dcdaaa7ba4e5905195ad8aa56319d584c2

See more details on using hashes here.

File details

Details for the file eigenpy-2.8.1-0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for eigenpy-2.8.1-0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 af4ba451975915c3ea2801ff0763a64339a909e9304d0a3539c551f4d7523a70
MD5 68785e4fa28ab641575511ff7ec2f827
BLAKE2b-256 59ddf266402236069dc641320e5775fbd7610e62cbd5df5fac472bc454b91994

See more details on using hashes here.

File details

Details for the file eigenpy-2.8.1-0-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for eigenpy-2.8.1-0-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 58f4217a596135cd4d1861ec44f036035c116b4dcd5c648ac70ec810ca134505
MD5 6cd130808d5868b60fad708f9ff8e760
BLAKE2b-256 36856dc5a84ca9bb564363b9da1e48ac49b4d973b278881063ccbb4594fd1e9e

See more details on using hashes here.

File details

Details for the file eigenpy-2.8.1-0-cp311-cp311-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for eigenpy-2.8.1-0-cp311-cp311-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 c698abcb30b7e31032d8d80b135d143813811a2dc7dc1a793a59d9714618c00c
MD5 445de5588e7103dbca4ca0fd6412a57b
BLAKE2b-256 02da09848b5ea9394ff4c12775e21ff0f6868056fd4c096fdd65aa9c733adb2b

See more details on using hashes here.

File details

Details for the file eigenpy-2.8.1-0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for eigenpy-2.8.1-0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 97c71ec8ad8c17180e7f89616d67b266f0cd33c1f27e42f3fa79916065291fc4
MD5 902b14070dd6e0140c555d408b1f260f
BLAKE2b-256 d02cc9ecbd7afad7220e69f369c3693af7e81a5a6615dda5f6809502b0eaecaa

See more details on using hashes here.

File details

Details for the file eigenpy-2.8.1-0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for eigenpy-2.8.1-0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2f2642d08e5d99c95500098155bd2623ccd5039aa60bd385913e88d757bc2c28
MD5 5f5ddebf33a8b83dbbe0a71638faccfe
BLAKE2b-256 f182ea1a182bdb69b2b3d8208800e707581494863a8d6e188822ec712379a523

See more details on using hashes here.

File details

Details for the file eigenpy-2.8.1-0-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for eigenpy-2.8.1-0-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d33dd2300d5454e84f75365eb99c934992785aa89385c9ea53e633fec50fe92b
MD5 064fd4b6c20d0c2cd1b96655ede3cc9e
BLAKE2b-256 227c8ee21813239bc7b43fd7ceeceb5014ee9e1ed93c74d35891d5b285470d0c

See more details on using hashes here.

File details

Details for the file eigenpy-2.8.1-0-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for eigenpy-2.8.1-0-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 431e9bf9eddb1ca2a5d46ff6ad1bcc7dd327b4aa994f5a2ebf7abf5a367909cb
MD5 0d0f628c9aa03c45cc411a2f9ccd7065
BLAKE2b-256 b9b364b1142d0af6de55d6ee83206b9a6015be08d0dcfb164af960d2639de6bc

See more details on using hashes here.

File details

Details for the file eigenpy-2.8.1-0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for eigenpy-2.8.1-0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6104d7d62d55d84faf52adecd545b1c72bc9b017080752869d85dde98a21e964
MD5 9e80ab811ca8f83fe6ec7c3dbc3eab4f
BLAKE2b-256 ca0c2bdfa4010444cc36f91a3e097bb4d1e3e1a391e35d1d51c2644ceef21d4b

See more details on using hashes here.

File details

Details for the file eigenpy-2.8.1-0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for eigenpy-2.8.1-0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 851a38c3133422783c760bf25781f90e533e6a6e5149fe891b539fd2db15993a
MD5 407b350d9f3eb068bd4130fccf79d605
BLAKE2b-256 6b8e2ff6d0baeaea8ad555b087cf553ba41a5a88d3951e41e69e144e793bd016

See more details on using hashes here.

File details

Details for the file eigenpy-2.8.1-0-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for eigenpy-2.8.1-0-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 698d3da1e40e343df77fae21b58b8d2b92970cad92003519f4b9bb7522f1bc78
MD5 8d485d6e9251f0e2f847eef9ea2859a9
BLAKE2b-256 e423a20431313ee55cd47583e57bb67ceff7bb797a75f3de0a54e65d3327f36a

See more details on using hashes here.

File details

Details for the file eigenpy-2.8.1-0-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for eigenpy-2.8.1-0-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 52b2c9f7ab272df93ae1908e83cdee8b9658e3b5031e1e6cc1064c70601569da
MD5 ab9ae8d6b2c6924d655e928c6871ecf4
BLAKE2b-256 595e244255b04d60e541f15a78bbab8d9cbf37fa770b4eadb52e4b17bd719dc0

See more details on using hashes here.

File details

Details for the file eigenpy-2.8.1-0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for eigenpy-2.8.1-0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 16e828b4b4098acb656429a61bc0b372f39da219a28fc0f81b0344e5f1f92fc3
MD5 143dbd7e9f10772f8358da0ced016edf
BLAKE2b-256 96e728df4967e3aab97c395effa8d1c7104da64d1dd5fc8d007162e55542201b

See more details on using hashes here.

File details

Details for the file eigenpy-2.8.1-0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for eigenpy-2.8.1-0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b9b138adb75505b220df9ac5a65527dc3e8f1cfe900014929c64fcfca7e08064
MD5 4616b56ae7ac50d8762a15dead1580f6
BLAKE2b-256 25ce31e24ac4b9b49e5e22d18abdd565c8129d06e9c7df93ebdb96e8112d8071

See more details on using hashes here.

File details

Details for the file eigenpy-2.8.1-0-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for eigenpy-2.8.1-0-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 e1c50faebaeebba823e37fff26f01de4b3e32e29dd318688d11139e078932c4d
MD5 6828c3fd3e69e49277d1652c985917ba
BLAKE2b-256 3d055d0bfe3f35e35d7fe4166ffdf37b46638a995f2db48c490f65eefacb2204

See more details on using hashes here.

File details

Details for the file eigenpy-2.8.1-0-cp38-cp38-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for eigenpy-2.8.1-0-cp38-cp38-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 c651544d2256b30655b6e26bd5eb091be1680ab76a2f5bfb27e3c4ad0dccca52
MD5 8c0db3f3c2438b28c9e9f740cbde8704
BLAKE2b-256 e4182456aa88a6ec31ee5f8755160fb10df70a1acc8ce03add0cb55d6544f562

See more details on using hashes here.

File details

Details for the file eigenpy-2.8.1-0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for eigenpy-2.8.1-0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 00566f36ad3a17d5e8d09ce4af1b04631fabc8076d8df395ffd8dc07988fbc03
MD5 24a5b45f01a9b0bc545ab7497df0afbc
BLAKE2b-256 d5941c0ba9327274ad9adaedf7092fec877ba5795fb98aa36497ff535f9663df

See more details on using hashes here.

File details

Details for the file eigenpy-2.8.1-0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for eigenpy-2.8.1-0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e1bf1e7d5e43e044df92463051c81c201511ee01b597055cda2139ab44b2bde2
MD5 ddeb8f413f1a2be6f9a04148f2798a1c
BLAKE2b-256 54a9ec696fd81f107e1ea2c6b1fab5ed2ec13b6f045af7a2cf602f4d5e5b46d8

See more details on using hashes here.

File details

Details for the file eigenpy-2.8.1-0-cp37-cp37m-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for eigenpy-2.8.1-0-cp37-cp37m-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 8f54e0da1dfb8f6f1b65e66340ba86bc8abb5b52a70f6ddafcb70778fc3043d4
MD5 d9acfdcf175a2f65a26642fb2fd64786
BLAKE2b-256 6ec6cddaf87a89e7efa9d791236192fde332dc666178d037f4c0f6b6b591d145

See more details on using hashes here.

File details

Details for the file eigenpy-2.8.1-0-cp37-cp37m-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for eigenpy-2.8.1-0-cp37-cp37m-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 d884bf9f0627927db6016249554cc09f9c521a0371b82b5203d7bfa0ec291eec
MD5 32766f8699b282667889f74dfe4ea258
BLAKE2b-256 584153a9b62da32df2a6fb80c13dc40d36b8bc39809fcf7f4c36639cc03bd317

See more details on using hashes here.

File details

Details for the file eigenpy-2.8.1-0-cp37-cp37m-macosx_10_16_x86_64.whl.

File metadata

File hashes

Hashes for eigenpy-2.8.1-0-cp37-cp37m-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 0e11b2522ca0d0daddba3076d6cba166d99a0ebab3608c2abca1740851cff745
MD5 a6fb215855886e9b513342769b905ea7
BLAKE2b-256 685880a2e63dbf73cdab3cb10a344e96c7efda4aaaacf701c9e787c47f74fe90

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page