Skip to main content

A DBAPI and SQLAlchemy dialect for Elasticsearch

Project description

ElasticSearch DBAPI

Build Status PyPI version Coverage Status

elasticsearch-dbapi Implements a DBAPI (PEP-249) and SQLAlchemy dialect, that enables SQL access on elasticsearch clusters for query only access.

On Elastic Elasticsearch: Uses Elastic X-Pack SQL API

On OpenSearch (AWS ES): OpenSearch SQL

This library supports Elasticsearch 7.x, Elasticsearch 8.x (via compatibility mode), and OpenSearch 2.x.

Note: To connect to Elasticsearch 8.x, set the environment variable ELASTIC_CLIENT_APIVERSIONING=1 on your Python application (not on Elasticsearch itself). This enables the elasticsearch-py client compatibility mode.

Installation

$ pip install elasticsearch-dbapi

To install support for AWS Elasticsearch Service / Open Distro:

$ pip install elasticsearch-dbapi[opendistro]

Usage:

Using DBAPI:

from es.elastic.api import connect

conn = connect(host='localhost')
curs = conn.cursor()
curs.execute(
    "select * from flights LIMIT 10"
)
print([row for row in curs])

Using SQLAlchemy execute:

from sqlalchemy.engine import create_engine

engine = create_engine("elasticsearch+http://localhost:9200/")
rows = engine.connect().execute(
    "select * from flights LIMIT 10"
)
print([row for row in rows])

Using SQLAlchemy:

from sqlalchemy import func, select
from sqlalchemy.engine import create_engine
from sqlalchemy.schema import MetaData, Table


engine = create_engine("elasticsearch+http://localhost:9200/")
logs = Table("flights", MetaData(bind=engine), autoload=True)
count = select([func.count("*")], from_obj=logs).scalar()
print(f"COUNT: {count}")

Using SQLAlchemy reflection:

from sqlalchemy.engine import create_engine
from sqlalchemy.schema import Table, MetaData

engine = create_engine("elasticsearch+http://localhost:9200/")
logs = Table("flights", MetaData(bind=engine), autoload=True)
print(engine.table_names())

metadata = MetaData()
metadata.reflect(bind=engine)
print([table for table in metadata.sorted_tables])
print(logs.columns)

Connection Parameters:

elasticsearch-py is used to establish connections and transport, this is the official elastic python library. Elasticsearch constructor accepts multiple optional parameters that can be used to properly configure your connection on aspects like security, performance and high availability. These optional parameters can be set at the connection string, for example:

   elasticsearch+http://localhost:9200/?http_compress=True&timeout=100

will set transport to use gzip (http_compress) and timeout to 10 seconds.

For more information on configuration options, look at elasticsearch-py’s documentation:

The connection string follows RFC-1738, to support multiple nodes you should use sniff_* parameters

Fetch size

By default the maximum number of rows which get fetched by a single query is limited to 10000. This can be adapted through the fetch_size parameter:

from es.elastic.api import connect

conn = connect(host="localhost", fetch_size=1000)
curs = conn.cursor()

If more than 10000 rows should get fetched then max_result_window has to be adapted as well.

Time zone

By default, elasticsearch query time zone defaults to Z (UTC). This can be adapted through the time_zone parameter:

from es.elastic.api import connect

conn = connect(host="localhost", time_zone="Asia/Shanghai")
curs = conn.cursor()

Tests

To run tests, launch Elasticsearch and/or OpenSearch using docker-compose:

$ docker-compose up -d
$ pytest -v es/tests

The docker-compose file includes:

  • Elasticsearch 7.x on port 9200
  • Elasticsearch 8.x on port 9201
  • OpenSearch 2.x on port 19200

To run tests against Elasticsearch 8.x:

$ export ELASTIC_CLIENT_APIVERSIONING=1  # Set on your Python environment
$ export ES_PORT=9201
$ pytest -v es/tests

To run tests against OpenSearch:

$ export ES_DRIVER=odelasticsearch
$ export ES_PORT=19200
$ pytest -v es/tests

Special case for sql opendistro endpoint (AWS ES)

AWS ES exposes the opendistro SQL plugin, and it follows a different SQL dialect. Using the odelasticsearch driver:

from sqlalchemy.engine import create_engine

engine = create_engine(
    "odelasticsearch+https://search-SOME-CLUSTER.us-west-2.es.amazonaws.com:443/"
)
rows = engine.connect().execute(
    "select count(*), Carrier from flights GROUP BY Carrier"
)
print([row for row in rows])

Or using DBAPI:

from es.opendistro.api import connect

conn = connect(host='localhost',port=9200,path="", scheme="http")

curs = conn.cursor().execute(
    "select * from flights LIMIT 10"
)

print([row for row in curs])

Opendistro (AWS ES) Basic authentication

Basic authentication is configured as expected on the , fields of the URI

from sqlalchemy.engine import create_engine

engine = create_engine(
    "odelasticsearch+https://my_user:my_password@search-SOME-CLUSTER.us-west-2.es.amazonaws.com:443/"
)

IAM AWS Authentication keys are passed on the URI basic auth location, and by setting aws_keys

Query string keys are:

  • aws_keys
  • aws_region
from sqlalchemy.engine import create_engine

engine = create_engine(
    "odelasticsearch+https://<AWS_ACCESS_KEY>:<AWS_SECRET_KEY>@search-SOME-CLUSTER.us-west-2.es.amazonaws.com:443/?aws_keys=1&&aws_region=<AWS_REGION>"
)

IAM AWS profile is configured has a query parameter name aws_profile on the URI. The value for the key provides the AWS region

from sqlalchemy.engine import create_engine

engine = create_engine(
    "odelasticsearch+https://search-SOME-CLUSTER.us-west-2.es.amazonaws.com:443/?aws_profile=us-west-2"
)

Using the new SQL engine:

Opendistro 1.13.0 brings (enabled by default) a new SQL engine, with lots of improvements and fixes. Take a look at the release notes

This DBAPI has to behave slightly different for SQL v1 and SQL v2, by default we comply with v1, to enable v2 support, pass v2=true has a query parameter.

odelasticsearch+https://search-SOME-CLUSTER.us-west-2.es.amazonaws.com:443/?aws_profile=us-west-2&v2=true

To connect to the provided Opendistro ES on docker-compose use the following URI: odelasticsearch+https://admin:admin@localhost:9400/?verify_certs=False

Known limitations

This library does not yet support the following features:

  • Array type columns are not supported. Elaticsearch SQL does not support them either. SQLAlchemy get_columns will exclude them.

  • object and nested column types are not well supported and are converted to strings

  • Indexes that whose name start with .

  • GEO points are not currently well-supported and are converted to strings

  • AWS ES (opendistro elascticsearch) is supported (still beta), known limitations are:

    • You are only able to GROUP BY keyword fields (new experimental opendistro SQL already supports it)
    • Indices with dots are not supported (indices like 'audit_log.2021.01.20'), on these cases we recommend the use of aliases

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

elasticsearch_dbapi-0.2.12-py3-none-any.whl (108.9 kB view details)

Uploaded Python 3

File details

Details for the file elasticsearch_dbapi-0.2.12-py3-none-any.whl.

File metadata

File hashes

Hashes for elasticsearch_dbapi-0.2.12-py3-none-any.whl
Algorithm Hash digest
SHA256 e23cbdd0c8fe1d806d332db8537ac22a1400023ce9ebbb4e48ecaa8783c87826
MD5 1add4b70cdaf0d90c0beb67440405a3d
BLAKE2b-256 7ae861d5ed998a99e80e03af83ebf9e8af103daee2e1f95eeb4d5b5a12572930

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page