Skip to main content

Visualization of text embeddings/vectorization with clustering

Project description

Visualize embed of documents

Install requirements and spacy model

You could use conda

conda create --name embedisualization python=3.6

source activate embedisualization

pip install -r requirements.txt

python -m spacy download en_vectors_web_lg

This spacy model (en_vectors_web_lg)[] is quite heavy (631MB)

Install embedisualization lib

pip install embedisualization


To run exemplary visualisation go to examples directory and run


It will take minute or two to generate embeddings and create 2D vis. The new webpage with D3 visualisation will be presented.

Sample of Trump's Tweets Embedisualized

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for embedisualization, version 0.4
Filename, size File type Python version Upload date Hashes
Filename, size embedisualization-0.4.tar.gz (4.3 kB) File type Source Python version None Upload date Hashes View
Filename, size embedisualization-0.4-py3-none-any.whl (4.8 kB) File type Wheel Python version py3 Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page