Skip to main content
Join the official Python Developers Survey 2018 and win valuable prizes: Start the survey!

Python library with methods to generate, process, analyze, and plot energy related timeseries.

Project description

Supported Python versions. BSD License version_status build_status Documentation cover

enlopy is an open source python library with methods to generate, process, analyze, and plot energy related timeseries.

While it can be used for any kind of data it has a strong focus on those that are related with energy i.e. electricity/heat demand or generation, prices etc. The methods included here are carefully selected to fit in that context and they had been, gathered, generalized and encapsulated during the last years while working on different research studies.

The aim is to provide a higher level API than the one that is already available in commonly used scientific packages (pandas, numpy, scipy). This facilitates the analysis and processing of energy load timeseries that can be used for modelling and statistical analysis. In some cases it is just a convenience wrapper of common packages just as pandas and in other cases it implements methods or statistical models found in literature.

It consists of four modules that include among others the following:

  • Analysis: Overview of descriptive statistics, reshape, load duration curve, extract daily archetypes (clustering)
  • Plot: 2d heatmap, 3d plot, boxplot, rugplot
  • Generate: generate from daily and monthly profiles, generate from sinusoidal function, sample from given load duration curve, or from given PSD, add noise gaussian and autoregressive noise, genrate correlated load profiles , fit to analytical load duration curve
  • Statistics: Feature extraction from timeseries for a quick overview of the characteristics of any load curve. Useful when coupled with machine learning packages.

This library is not focusing on regression and prediction (e.g. ARIMA, state-space etc.), since there are numerous relevant libraries around.

Example

Try to run one of the following commands to explore some of this library’s features:

>>> import numpy as np
>>> import enlopy as el
>>> Load = np.random.rand(8760) # Create random vector of values
>>> eload = el.make_timeseries(Load) # Convenience wrapper around pandas timeseries

>>> el.plot_heatmap(eload, x='day', y='month', aggfunc='mean') # Plots 2d heatmap
>>> el.plot_percentiles(eload) # Plots mean and quantiles
>>> el.get_load_archetypes(eload, plot_diagnostics=True) # Splits daily loads in clusters (archetypes)

Assuming that df is a dataframe with a pd.DateTimeindex, we can obtain the following charts:

>>> el.plot_rug(df) # Plots a nice rugplot. Useful for dispatch results
Dispatch plot for different generator types sorted by their intermittency.
>>> el.plot_LDC(df, zoom_peak=True) # Plots a Load Duration Curve
Load duration curve

More examples can be found in this jupyter notebook.

Documentation

Detailed documentation is still under construction, but you can find an overview of the available methods here: http://enlopy.readthedocs.io/

Install

Currently you can find the latest stable version in pypi. You can install it with:

pip install enlopy

Be aware that this library is still in conceptual mode, so the API is most probably going to change in the following versions. If you already have it installed and you want to upgrade to the latest stable version please use the following:

pip install -U --upgrade-strategy only-if-needed enlopy

This will ensure that the dependencies will not be updated if the minimum requirements are already satisfied with the current version.

If you want to download the latest version from git for use or development purposes:

git clone https://github.com/kavvkon/enlopy.git
cd enlopy
conda env create  # Automatically creates environment based on environment.yml
source activate enlopy
pip install -e . # Install editable local version

It should be ready to run out of the box for anyone that has the anaconda distribution installed. The only dependencies required to use enlopy are the following:

Contribute

My vision is to make this library a domain-specific wrapper for any kind of energy modelling. If you think you can contribute with new relevant methods that you are currently using or improve the code or documentation in any way, feel free to contact me, fork the repository and send your pull requests.

Citing

If you use this library in an academic work, please consider citing it.

[1] K. Kavvadias, “enlopy: Python toolkit for energy load time series”, http://github.com/kavvkon/enlopy

enlopy has been already used for processing demand timeseries in this scientific paper: http://dx.doi.org/10.1016/j.apenergy.2016.08.077

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
enlopy-0.1.dev10-py2.py3-none-any.whl (27.1 kB) Copy SHA256 hash SHA256 Wheel py2.py3 Jun 12, 2018
enlopy-0.1.dev10.tar.gz (25.8 kB) Copy SHA256 hash SHA256 Source None Jun 12, 2018

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page