Skip to main content

Sampling SVD singular vectors for Distributional Semantics Models

Project description

entropix

GitHub release PyPI release Build MIT License

Generate count-based Distributional Semantic Models by sampling SVD singular vectors instead of using top components.

Install

pip install entropix

or, after a git clone:

python3 setup.py install

Use

Sequential mode

entropix sample \
--model /abs/path/to/dense/numpy/model.npy \
--vocab /abs/path/to/corresponding/model.vocab \
--dataset dataset_to_optimize_on \  # men, simlex or simverb
--shuffle \
--mode seq \
--kfold-size .2 \  # size of kfold, between 0 and .5
--metric pearson \  # spr(spearman), pearson, rmse or both (spr+rmse)
--num-threads 5

Limit mode

entropix sample \
--model /abs/path/to/dense/numpy/model.npy \
--vocab /abs/path/to/corresponding/model.vocab \
--dataset dataset_to_optimize_on \  # men, simlex or simverb
--mode limit \
--metric pearson \
--limit 10  # number of dimensions to sample

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for entropix, version 2.0.1
Filename, size File type Python version Upload date Hashes
Filename, size entropix-2.0.1.tar.gz (7.9 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page