Evaluation of Predictive CapabilitY
Project description
|
|
Citing:
Manuscript in preparation
EPCY: Evaluation of Predictive CapabilitY for ranking biomarker gene candidates. Poster at ISMB ECCB 2019: https://f1000research.com/posters/8-1349
Introduction:
This tool was developed to Evaluate Predictive CapabilitY of each gene (feature) to become a predictive (bio)marker candidates. Documentation is available via Read the Docs.
Requirements:
python >= 3.11.5
Install:
Using pypi:
pip install epcy
From source:
python3 -m venv $HOME/.virtualenvs/epcy
source $HOME/.virtualenvs/epcy/bin/activate
pip install pip setuptools --upgrade
pip install wheel
cd [your_epcy_folder]
pip install -e .
epcy -h
Usage:
General:
After install:
epcy -h
From source:
cd [your_epcy_folder]
python3 -m epcy -h
Generic case:
EPCY is design to work on any quantitative data, provided that values of each feature are comparable between each samples (normalized).
To run a comparative analysis, epcy pred need two tabulated files:
# Run epcy on any normalized quantification data
epcy pred -d ./data/small_for_test/design.tsv -m ./data/small_for_test/log_normalized_matrix.tsv -o ./data/small_for_test/EPCY_output
# If your data are normalized, but require a log2 transforamtion, add --log
epcy pred --log -d ./data/small_for_test/design.tsv -m ./data/small_for_test/normalized_matrix.tsv -o ./data/small_for_test/EPCY_output
# If your data are not normalized and require a log2 transforamtion, add --norm --log
epcy pred --norm --log -d ./data/small_for_test/design.tsv -m ./data/small_for_test/matrix.tsv -o ./data/small_for_test/EPCY_output
# Different runs might show small variations.
# To ensure reproducibility set a random seed, using --randomseed
epcy pred -d ./data/small_for_test/design.tsv -m ./data/small_for_test/normalized_matrix.tsv -o ./data/small_for_test/EPCY_output --randomseed 42
epcy pred -d ./data/small_for_test/design.tsv -m ./data/small_for_test/normalized_matrix.tsv -o ./data/small_for_test/EPCY_output2 --randomseed 42
diff ./data/small_for_test/EPCY_output/predictive_capability.tsv ./data/small_for_test/EPCY_output2/predictive_capability.tsv
More documentation is available via Read the Docs.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file epcy-0.2.6.4.tar.gz
.
File metadata
- Download URL: epcy-0.2.6.4.tar.gz
- Upload date:
- Size: 2.5 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
d8bc4a1ef2c33ffb605d4d381f40fd167197bfe236ce95439a666625e5154af3
|
|
MD5 |
70c48da7f4d35eda4f0146442d07402a
|
|
BLAKE2b-256 |
2d1ae473eec1f54304a5cf085708cd9a4867efae38341d1f5606e52406ed92ee
|
File details
Details for the file epcy-0.2.6.4-py3-none-any.whl
.
File metadata
- Download URL: epcy-0.2.6.4-py3-none-any.whl
- Upload date:
- Size: 40.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
8384c513c6f83addfe2f69a129aaec60fb0ba2c058d98d2922a643646673c3a2
|
|
MD5 |
c2b761992d600e809f7328fc54521808
|
|
BLAKE2b-256 |
65b624949c2a4dbae44319fe8228007d5098984c8c9c4bef5b70524cb7744782
|