Ce module permet de d'analyser les données d'LDAP à l'EPFL
Project description
epflldap
Installation
pip install dist/epflldap-<version>-py3-none-any.whl
Build new version
- Makes changes
- Change the version in
_version.py python setup.py bdist_wheel
Basic usages
1. Get and save locally the data of EPFL Ldap
import epflldap
data = epflldap.db()
data.to_pickle()
This will create locally a ldap_epfl.pickle file.
To load the local data:
import epflldap
data = epflldap.db(read_from_pickle=True)
2. Get users data only
import epflldap
users = epflldap.db(read_from_pickle=True).get_users()
You will get a Users object.
3. Filter users data
Filter by group
import epflldap
users = epflldap.db(read_from_pickle=True).get_users()
users_filtered = users.filter_by_group('webmasters')
You will get an other Users object with only the filtered data. Available
groups are here: https://groups.epfl.ch/
Filter by status
import epflldap
users = epflldap.db(read_from_pickle=True).get_users()
users_filtered = users.filter_by_status(['Personnel'])
Possible status are:
PersonnelEtudiantHôteHors EPFL
Several entries don't have a status.
Filter by unit
import epflldap
users = epflldap.db(read_from_pickle=True).get_users()
users_filtered = users.filter_by_unit('SISB')
You will get all the users from the SISB team.
Filter by school
import epflldap
users = epflldap.db(read_from_pickle=True).get_users()
users_filtered = users.filter_by_school('CDH')
You will get all the users from the CDH school.
Filter by sciper
import epflldap
users = epflldap.db(read_from_pickle=True).get_users()
users_filtered = users.filter_by_sciper(['sciper1', 'sciper2'])
Filter the list of users with the given list of sciper id.
In order to get information about a specific user you can:
import epflldap
epflldap.db(read_from_pickle=True)
.get_users()
.filter_by_sciper(['sciper1'])
.data[0]
.get_info()
You will get a Pandas Series with information about the person with the given sciper.
Keep only first accred
import epflldap
users = epflldap.db(read_from_pickle=True).get_users()
users_filtered = users.filter_by_first_accred()
You will get only the main accreditation of each user.
4. Get all the email addresses of a Users object
import epflldap
users = epflldap.db(read_from_pickle=True).get_users()
users_filtered = users.filter_by_group('webmasters')
users_filtered.get_emails()
You will get all the email addresses of the group 'webmaster'. If you want a txt file, you can add an argument:
users.get_emails(output='addresses.txt')
5. Get Excel file with personal information data
import epflldap
users = epflldap.db(read_from_pickle=True).get_users()
users_filtered = users.filter_by_group('webmasters')
users_filtered.to_excel(webmasters.xlsx)
This will create a xlsx file with personal information about the users.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file epflldap-0.4.1.tar.gz.
File metadata
- Download URL: epflldap-0.4.1.tar.gz
- Upload date:
- Size: 6.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
16a5808f5ce2babfb593228a15aaaaf0b47e2ff10b20bc23790b8ada1be89d09
|
|
| MD5 |
e0421d466ecb23e84c082ab6a3373320
|
|
| BLAKE2b-256 |
746455a845240b2c1dad0cc30b3eb297f47b9764cefcd372f3db69ab73a6a103
|
File details
Details for the file epflldap-0.4.1-py3-none-any.whl.
File metadata
- Download URL: epflldap-0.4.1-py3-none-any.whl
- Upload date:
- Size: 8.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
6727c47a03b0585b93301f8d9a098f69679b653cf8481504eb9e7557c7227839
|
|
| MD5 |
e7e2e1ecb9b72b066fc78e9c5d514488
|
|
| BLAKE2b-256 |
d5fdd61d93d9889cbc1a32b890654146625bef5f4b868b74e0577638ebb1128c
|