Skip to main content
This is a pre-production deployment of Warehouse. Changes made here affect the production instance of PyPI (pypi.python.org).
Help us improve Python packaging - Donate today!

Predict Race/Ethnicity Based on Name

Project Description
ethnicolr: Predict Race and Ethnicity From Name
----------------------------------------------------

.. image:: https://travis-ci.org/soodoku/ethnicolr.svg?branch=master
:target: https://travis-ci.org/soodoku/ethnicolr
.. image:: https://ci.appveyor.com/api/projects/status/qfvbu8h99ymtw2ub?svg=true
:target: https://ci.appveyor.com/project/soodoku/ethnicolr
.. image:: https://img.shields.io/pypi/v/ethnicolr.svg
:target: https://pypi.python.org/pypi/ethnicolr

We exploit the US census data, the Florida voting registration data, and
the Wikipedia data collected by Skiena and colleagues, to predict race
and ethnicity based on first and last name or just the last name. The granularity
at which we predict the race depends on the dataset. For instance,
Skiena et al.' Wikipedia data is at the ethnic group level, while the
census data we use in the model (the raw data has additional categories of
Native Americans and Bi-racial) merely categorizes between Non-Hispanic Whites,
Non-Hispanic Blacks, Asians, and Hispanics.

Caveats and Notes
-----------------------

If you picked a random individual with last name 'Smith' from the US in 2010
and asked us to guess this person's race (measured as crudely as by the census),
the best guess would be based on what is available from the aggregated Census file.
It is the Bayes Optimal Solution. So what good are last name only predictive models
for? A few things---if you want to impute ethnicity at a more granular level,
guess the race of people in different years (than when the census was conducted
if some assumptions hold), guess the race of people in different countries (again if some
assumptions hold), when names are slightly different (again with some assumptions), etc.
The big benefit comes from when both the first name and last name is known.

Install
----------

::

pip install ethnicolr

General API
----------

To see the available command line options for any function, please type in
``<function-name> --help``

::

# census_ln --help
usage: census_ln [-h] [-y {2000,2010}] [-o OUTPUT] -l LAST input

Appends Census columns by last name

positional arguments:
input Input file

optional arguments:
-h, --help show this help message and exit
-y {2000,2010}, --year {2000,2010}
Year of Census data (default=2000)
-o OUTPUT, --output OUTPUT
Output file with Census data columns
-l LAST, --last LAST Name or index location of column contains the last
name


Examples
----------

To append census data from 2010 to a `file without column headers <ethnicolr/data/input-without-header.csv>`__ and the first column carries the last name, use ``-l 0``

::

census_ln -y 2010 -o output-census2010.csv -l 0 input-without-header.csv

To append census data from 2010 to a `file with column header in the first row <ethnicolr/data/input-with-header.csv>`__, specify the column name carrying last names using the ``-l`` option, keeping the rest the same:

::

census_ln -y 2010 -o output-census2010.csv -l last_name input-with-header.csv


To predict race/ethnicity using `Wikipedia full name model <ethnicolr/models/ethnicolr_keras_lstm_wiki_name.ipynb>`__, if the input file doesn't have any column headers, you must using ``-l`` and ``-f`` to specify the index of column carrying the last name and first name respectively (first column has index 0).

::

pred_wiki_name -o output-wiki-pred-race.csv -l 0 -f 1 input-without-header.csv


And to predict race/ethnicity using `Wikipedia full name model <ethnicolr/models/ethnicolr_keras_lstm_wiki_name.ipynb>`__ for a file with column headers, you can specify the column name of last name and first name by using ``-l`` and ``-f`` flags respectively.

::

pred_wiki_name -o output-wiki-pred-race.csv -l last_name -f first_name input-with-header.csv


Functions
----------

We expose 6 functions, each of which either take a pandas DataFrame or a CSV. If the CSV doesn't have a header,
we make some assumptions about where the data is

- **census\_ln**

- Input: pandas DataFrame or CSV and a string or list of the name or
location of the column containing the last name.

- What it does:

- Removes extra space.
- For names in the `census file <ethnicolr/data/census>`__, it appends relevant data.

- Options:

- year: 2000 or 2010
- if no year is given, data from the 2000 census is appended

- Output: Appends the following columns to the pandas DataFrame or CSV:
pctwhite, pctblack, pctapi, pctaian, pct2prace, pcthispanic

- **pred\_census\_ln**

- Input: pandas DataFrame or CSV and string or list of the name or
location of the column containing the last name.

- What it does:

- Removes extra space.
- Uses the `last name census 2000
model <ethnicolr/models/ethnicolr_keras_lstm_census2000_ln.ipynb>`__
or `last name census 2010
model <ethnicolr/models/ethnicolr_keras_lstm_census2010_ln.ipynb>`__
to predict the race and ethnicity.

- Options:

- year: 2000 or 2010

- Output: Appends the following columns to the pandas DataFrame or CSV:
race (white, black, asian, or hispanic), api (percentage chance asian),
black, hispanic, white.

- **pred\_wiki\_ln**

- Input: pandas DataFrame or CSV and string or list of the name or
location of the column containing the last name.

- What it does:

- Removes extra space.
- Uses the `last name wiki model <ethnicolr/models/ethnicolr_keras_lstm_wiki_ln.ipynb>`__
to predict the race and ethnicity.

- Output: Appends the following columns to the pandas DataFrame or CSV:
race (categorical variable --- category with the highest probability),
"Asian,GreaterEastAsian,EastAsian", "Asian,GreaterEastAsian,Japanese",
"Asian,IndianSubContinent", "GreaterAfrican,Africans", "GreaterAfrican,Muslim",
"GreaterEuropean,British","GreaterEuropean,EastEuropean",
"GreaterEuropean,Jewish","GreaterEuropean,WestEuropean,French",
"GreaterEuropean,WestEuropean,Germanic","GreaterEuropean,WestEuropean,Hispanic",
"GreaterEuropean,WestEuropean,Italian","GreaterEuropean,WestEuropean,Nordic"

- **pred\_wiki\_name**

- Input: pandas DataFrame or CSV and string or list containing the name or
location of the column containing the first name, last name, middle
name, and suffix, if there. The first name and last name columns are
required. If no middle name of suffix columns are there, it is
assumed that there are no middle names or suffixes.

- What it does:

- Removes extra space.
- Uses the `full name wiki
model <ethnicolr/models/ethnicolr_keras_lstm_wiki_name.ipynb>`__ to predict the
race and ethnicity.

- Output: Appends the following columns to the pandas DataFrame or CSV:
race (categorical variable---category with the highest probability),
"Asian,GreaterEastAsian,EastAsian", "Asian,GreaterEastAsian,Japanese",
"Asian,IndianSubContinent", "GreaterAfrican,Africans", "GreaterAfrican,Muslim",
"GreaterEuropean,British","GreaterEuropean,EastEuropean",
"GreaterEuropean,Jewish","GreaterEuropean,WestEuropean,French",
"GreaterEuropean,WestEuropean,Germanic","GreaterEuropean,WestEuropean,Hispanic",
"GreaterEuropean,WestEuropean,Italian","GreaterEuropean,WestEuropean,Nordic"

- **pred\_fl\_reg\_ln**

- Input: pandas DataFrame or CSV and string or list of the name or location
of the column containing the last name.

- What it does?:

- Removes extra space, if there.
- Uses the `last name FL registration
model <ethnicolr/models/ethnicolr_keras_lstm_fl_voter_ln.ipynb>`__ to predict the race
and ethnicity.

- Output: Appends the following columns to the pandas DataFrame or CSV:
race (white, black, asian, or hispanic), asian (percentage chance Asian),
hispanic, nh_black, nh_white

- **pred\_fl\_reg\_name**

- Input: pandas DataFrame or CSV and string or list containing the name or
location of the column containing the first name, last name, middle
name, and suffix, if there. The first name and last name columns are
required. If no middle name of suffix columns are there, it is
assumed that there are no middle names or suffixes.

- What it does:

- Removes extra space.
- Uses the `full name wiki
model <ethnicolr/models/ethnicolr_keras_lstm_fl_voter_name.ipynb>`__ to predict the
race and ethnicity.

- Output: Appends the following columns to the pandas DataFrame or CSV:
race (white, black, asian, or hispanic), asian (percentage chance Asian),
hispanic, nh_black, nh_white

Using ethnicolr
----------------

::

>>> import pandas as pd

>>> from ethnicolr import census_ln, pred_census_ln
Using TensorFlow backend.

>>> names = [{'name': 'smith'},
... {'name': 'zhang'},
... {'name': 'jackson'}]

>>> df = pd.DataFrame(names)

>>> df
name
0 smith
1 zhang
2 jackson

>>> census_ln(df, 'name')
name pctwhite pctblack pctapi pctaian pct2prace pcthispanic
0 smith 73.35 22.22 0.40 0.85 1.63 1.56
1 zhang 0.61 0.09 98.16 0.02 0.96 0.16
2 jackson 41.93 53.02 0.31 1.04 2.18 1.53

>>> census_ln(df, 'name', 2010)
name race pctwhite pctblack pctapi pctaian pct2prace pcthispanic
0 smith white 70.9 23.11 0.5 0.89 2.19 2.4
1 zhang api 0.99 0.16 98.06 0.02 0.62 0.15
2 jackson black 39.89 53.04 0.39 1.06 3.12 2.5

>>> pred_census_ln(df, 'name')
name race api black hispanic white
0 smith white 0.007041 0.289588 0.021370 0.923900
1 zhang api 0.986815 0.001280 0.003912 0.003388
2 jackson black 0.005966 0.928257 0.058646 0.735056

>>> help(pred_census_ln)
Help on function pred_census_ln in module ethnicolr.pred_census_ln:

pred_census_ln(df, namecol, year=2000)
Predict the race/ethnicity by the last name using Census model.

Using the Census last name model to predict the race/ethnicity of the input
DataFrame.

Args:
df (:obj:`DataFrame`): Pandas DataFrame containing the last name
column.
namecol (str or int): Column's name or location of the name in
DataFrame.
year (int): The year of Census model to be used. (2000 or 2010)
(default is 2000)

Returns:
DataFrame: Pandas DataFrame with additional columns:
- `race` the predict result
- `black`, `api`, `white`, `hispanic` are the prediction
probability.

Application
--------------

Illustrating the use of the package by imputing the race of the campaign contributors recorded by FEC for the years 2000 and 2010.

`Contrib 2000 <ethnicolr/examples/ethnicolr_app_contrib2000.ipynb>`__
`Contrib 2010 <ethnicolr/examples/ethnicolr_app_contrib2010.ipynb>`__

Data
----------

In particular, we utilize the last-name--race data from the `2000
census <http://www.census.gov/topics/population/genealogy/data/2000_surnames.html>`__
and `2010
census <http://www.census.gov/topics/population/genealogy/data/2010_surnames.html>`__,
the `Wikipedia data <ethnicolr/data/wiki/>`__ collected by Skiena and colleagues,
and the Florida voter registration data from early 2017.

- `Census <ethnicolr/data/census/>`__
- `The Wikipedia dataset <ethnicolr/data/wiki/>`__
- `Florida voter registration database <http://dx.doi.org/10.7910/DVN/UBIG3F>`__

Authors
----------

Suriyan Laohaprapanon and Gaurav Sood

Contributor Code of Conduct
---------------------------------

The project welcomes contributions from everyone! In fact, it depends on
it. To maintain this welcoming atmosphere, and to collaborate in a fun
and productive way, we expect contributors to the project to abide by
the `Contributor Code of
Conduct <http://contributor-covenant.org/version/1/0/0/>`__.

License
----------

The package is released under the `MIT
License <https://opensource.org/licenses/MIT>`__.
Release History

Release History

This version
History Node

0.1.3

History Node

0.1.2

Download Files

Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
ethnicolr-0.1.3.tar.gz (17.1 MB) Copy SHA256 Checksum SHA256 Source Sep 17, 2017

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting