A set of tools to aid in the identification of false positive variants in Variant Call Files.
Project description
ExtremeVariantFilter
Extreme Variant Filter is a set of tools developed to aid in the identification of false positive variants in Genomic Variant Call Files based on XGBoost.
Functions
apply_filter
Usage:
apply_filter (--vcf STR) (--snp-model STR) (--indel-model STR) [--verbose]
Description:
Apply models generated by train_model to a VCF.
Arguments:
--vcf STR VCF to be filtered
--snp-model STR Model for applying to SNPs
--indel-model INT Model for applying to InDels
Options:
-h, --help Show this help message and exit.
-v, --version Show version and exit.
--verbose Log output
Examples:
apply_filter --vcf <table> --snp-model <snp.pickle.dat> --indel-model <indel.pickle.dat>
train_model
Usage:
train_model (--true-pos STR) (--false-pos STR) (--type STR) [--out STR] [--njobs INT] [--verbose]
Description:
Train a model to be saved and used to filter VCFs.
Arguments:
--true-pos STR Path to true-positive VCF from VCFeval or comma-seperated list of paths
--false-pos STR Path to false-positive VCF from VCFeval or comma-seperated list of paths
--type STR SNP or INDEL
Options:
-o, --out <STR> Outfile name for writing model [default: (type).filter.pickle.dat]
-n, --njobs <INT> Number of threads to run in parallel [default: 2]
-h, --help Show this help message and exit.
-v, --version Show version and exit.
--verbose Log output
Examples:
train_table --true-pos <path/to/tp/vcf(s)> --false-pos <path/to/fp/vcf(s)> --type [SNP, INDEL] --njobs 20
Install
To install and run EVF simply type:
pip install extremevariantfilter
stLFR Paper Results
If you'd like to use this tool to corroborate the results from the
stLFR Paper on Bioarxiv paper,
the models used for variant filtering are available within the models/
directory.
In order to get identical results, after installation, use the command
pip install -r requirements.txt
from within this directory to ensure your
environment matches the one we used for our results.
Different versions of certain packages will result in variable results.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file extremevariantfilter-0.0a1.tar.gz
.
File metadata
- Download URL: extremevariantfilter-0.0a1.tar.gz
- Upload date:
- Size: 7.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/2.7.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e667c394c35d26b10102afdc9357262b5b9082b102fa17d1b54cd6bd100dc09e |
|
MD5 | fa3a8c9cb6653990c2763dabff872a14 |
|
BLAKE2b-256 | c8dc1f2d4afd3af7810e573c0728db31f2d4b19df728d7ff15b85b722ee81218 |
File details
Details for the file extremevariantfilter-0.0a1-py2-none-any.whl
.
File metadata
- Download URL: extremevariantfilter-0.0a1-py2-none-any.whl
- Upload date:
- Size: 11.5 kB
- Tags: Python 2
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/2.7.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 138b25b7293da3be008efb2e6dc73c49d4114c86d87fb05b01194dede27b096f |
|
MD5 | 50b5c990697090e187875c1744bf52b1 |
|
BLAKE2b-256 | d550e130bb79348932feb9654802f60d9cd078b848145636eeda4347731f0198 |