Easy Natural Language Processing
Project description
Easy Natural Language Processing
Overparameterized neural networks are lazy (Chizat et al., 2019), so we design structures and objectives that can be easily optimized.
eznlp
is a PyTorch
-based package for neural natural language processing, currently supporting the following tasks:
- Text Classification (Experimental Results)
- Named Entity Recognition (Experimental Results)
- Relation Extraction (Experimental Results)
- Attribute Extraction
- Machine Translation
- Image Captioning
This repository also maintains the code of our papers:
- Check this link for "Deep Span Representations for Named Entity Recognition" accepted to Findings of ACL 2023.
- Check this link for "Boundary Smoothing for Named Entity Recognition" in ACL 2022.
- Check this link for the annotation scheme described in "A Unified Framework of Medical Information Annotation and Extraction for Chinese Clinical Text".
Installation
Create an environment
$ conda create --name eznlp python=3.8
$ conda activate eznlp
Install dependencies
$ conda install numpy=1.18.5 pandas=1.0.5 xlrd=1.2.0 matplotlib=3.2.2
$ conda install pytorch=1.7.1 torchvision=0.8.2 torchtext=0.8.1 {cpuonly|cudatoolkit=10.2|cudatoolkit=11.0} -c pytorch
$ pip install -r requirements.txt
Install eznlp
- From source (recommended)
$ python setup.py sdist
$ pip install dist/eznlp-<version>.tar.gz --no-deps
- With
pip
$ pip install eznlp --no-deps
Running the Code
Text classification
$ python scripts/text_classification.py --dataset <dataset> [options]
Entity recognition
$ python scripts/entity_recognition.py --dataset <dataset> [options]
Relation extraction
$ python scripts/relation_extraction.py --dataset <dataset> [options]
Attribute extraction
$ python scripts/attribute_extraction.py --dataset <dataset> [options]
Citation
If you find our code useful, please cite the following papers:
@article{zhu2022deep-span,
title={Deep Span Representations for Named Entity Recognition},
author={Zhu, Enwei and Liu, Yiyang and Li, Jinpeng},
journal={arXiv preprint arXiv:2210.04182},
year={2022}
}
@inproceedings{zhu2022boundary,
title={Boundary Smoothing for Named Entity Recognition},
author={Zhu, Enwei and Li, Jinpeng},
booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
month={may},
year={2022},
address={Dublin, Ireland},
publisher={Association for Computational Linguistics},
url={https://aclanthology.org/2022.acl-long.490},
pages={7096--7108}
}
@article{zhu2021framework,
title={A Unified Framework of Medical Information Annotation and Extraction for {C}hinese Clinical Text},
author={Zhu, Enwei and Sheng, Qilin and Yang, Huanwan and Li, Jinpeng},
journal={arXiv preprint arXiv:2203.03823},
year={2021}
}
References
- Chizat, L., Oyallon, E., and Bach, F. On lazy training in differentiable programming. In NeurIPS 2019.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
eznlp-0.2.4.tar.gz
(121.9 kB
view hashes)