Skip to main content

Force Atlas 2 graph layout

Project description

ForceAtlas2 is a continuous graph layout algorithm for handy network visualization.

This implementation is based on this paper.

Warning: Some features (especially Prevent Overlapping) are not completely implemented. I’m waiting for your pull-requests.

Example of social graph rendered with force atlas 2 layout:

https://raw.githubusercontent.com/bosiakov/fa2l/master/_static/result.jpg

Installing

Supports Python 3.3+

Install from pip:

pip install fa2l

To build and install run from source:

python setup.py install

Usage

import networkx as nx
from fa2l import force_atlas2_layout
import matplotlib.pyplot as plt

G = nx.erdos_renyi_graph(100, 0.15, directed=False)

positions = force_atlas2_layout(G,
                                iterations=1000,
                                pos_list=None,
                                node_masses=None,
                                outbound_attraction_distribution=False,
                                lin_log_mode=False,
                                prevent_overlapping=False,
                                edge_weight_influence=1.0,

                                jitter_tolerance=1.0,
                                barnes_hut_optimize=True,
                                barnes_hut_theta=0.5,

                                scaling_ratio=2.0,
                                strong_gravity_mode=False,
                                multithread=False,
                                gravity=1.0)

nx.draw_networkx(G, positions, cmap=plt.get_cmap('jet'), node_size=50, with_labels=False)
plt.show()

Features

Force Atlas 2 features these settings:

  • Approximate Repulsion: Barnes Hut optimization: n² complexity to n.ln(n).

  • Gravity: Attracts nodes to the center. Prevents islands from drifting away.

  • Dissuade Hubs: Distributes attraction along outbound edges. Hubs attract less and thus are pushed to the borders.

  • LinLog mode: Switch ForceAtlas model from lin-lin to lin-log. Makes clusters more tight.

  • Prevent Overlap. WARNING! Does not work very well.

  • Tolerance: How much swinging you allow. Above 1 discouraged. Lower gives less speed and more precision.

  • Edge Weight Influence: How much influence you give to the edges weight. 0 is “no influence” and 1 is “normal”.

Documentation

You will find all the documentation in the source code

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fa2l-0.2.tar.gz (7.8 kB view details)

Uploaded Source

File details

Details for the file fa2l-0.2.tar.gz.

File metadata

  • Download URL: fa2l-0.2.tar.gz
  • Upload date:
  • Size: 7.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for fa2l-0.2.tar.gz
Algorithm Hash digest
SHA256 21178bfdb7f01a1778de425982cc4fd499caead2a13b2b26e2174ad43e918ca8
MD5 25a8e526ba39a933e837a85962840dd2
BLAKE2b-256 ca5cd2febc43886ab3991e4fd31e901253590360c53b1f648d216477d595558e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page