A library for efficient similarity search and clustering of dense vectors
Project description
Unofficial prebuilt binary for Linux and MacOS
The repo that builds this project can be found here: https://github.com/onfido/faiss_prebuilt
Original readme:
Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any size, up to ones that possibly do not fit in RAM. It also contains supporting code for evaluation and parameter tuning. Faiss is written in C++ with complete wrappers for Python/numpy. Some of the most useful algorithms are implemented on the GPU. It is developed by Facebook AI Research.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distributions
Close
Hashes for faiss-1.5.3-cp37-cp37m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 48e7a238046f6fc647800a0cd3bc0f3f5e1e232369d48473da694ab262fcb67c |
|
MD5 | cc717ce33243a7a093688bd3241cb206 |
|
BLAKE2b-256 | ef2edc5697e9ff6f313dcaf3afe5ca39d7d8334114cbabaed069d0026bbc3c61 |
Close
Hashes for faiss-1.5.3-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c2342b0a08995f06d39dc544afe12f301411c104489f3d36cedf30942cd79874 |
|
MD5 | ffeb353475a97d0fcaa1784426d921fb |
|
BLAKE2b-256 | bd6ccdac22d987c093e1cd3570edd510fe0b52067eb229533347b155ff8d33ed |
Close
Hashes for faiss-1.5.3-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6f0c9d0cd4ba2a3c54d5c0184bfdcd20d071ce833ba2ce41f7c18d56bf30324f |
|
MD5 | 0e9a756f0bdc8f0d350e59be1cc3182f |
|
BLAKE2b-256 | bd1c4ae6cb87cf0c09c25561ea48db11e25713b25c580909902a92c090b377c0 |
Close
Hashes for faiss-1.5.3-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 00bc2f7b7fd8fd793e054a814c97958283478ca1270fb75d66ade210ee1bed75 |
|
MD5 | e0cf2b5d4e3d5d338043f3a57ad8c763 |
|
BLAKE2b-256 | 47262f521173730c77b7996b231f14badede70c5bc2b5fac58309923ffb5df9f |
Close
Hashes for faiss-1.5.3-cp35-cp35m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 162e674ed57c800bef9a51428719379f7a03b56bd78b6df9c3861e64730bbd33 |
|
MD5 | 051479d77c02c1dc0edde63e9dfa7eba |
|
BLAKE2b-256 | 7c30e53457fb7ea0e1f5d89bf68d6aef327bf7f37b7917361a02c44d5a5cd1db |
Close
Hashes for faiss-1.5.3-cp35-cp35m-macosx_10_13_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d29ec4a1c27ce464a13f54540da35d916373f7f1c2445de4bf6607f89e16a345 |
|
MD5 | cdc7b2591015876f28bd15eaae893a05 |
|
BLAKE2b-256 | 0c9fbad61a840e304f6ab82ecb86db6b0cd98b67f0aa4acedeca3d8f6aceb541 |
Close
Hashes for faiss-1.5.3-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 680e0cab16d457698b282a21a0ea7fe20e0d37e8181f81a905cceed80f12ffd3 |
|
MD5 | 4c1527fa62f6806e6a693c60b825e20b |
|
BLAKE2b-256 | bdac2bdea5b6c20de8d4874c9725e55f74496134ec82d41428d269a9ea4301d5 |
Close
Hashes for faiss-1.5.3-cp27-cp27m-macosx_10_13_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | cc60fee206befd666f1bba56767d1df857ca1fe8d550749dc426719ba96e35ce |
|
MD5 | f0144116665a2bf7d9823538fea824a7 |
|
BLAKE2b-256 | 9114937da22b9fb796f5a65990cf1f3790a5e8f6a8abc180d6a68d431c9ebd04 |