Skip to main content

Download data from the Food and Agriculture Organisation (FAO)

Project description

A simple python interface to download data from the Food and Agriculture Organisation (FAO).

What is faodata?

  • faodata is a simple python interface to find and request data from the Food and Agriculture organization of the United Nations (FAO).

  • The package uses the FAO API.

  • Country boundaries that are used to plot data are from Natural Earth (1:110m resolution)


pip install faodata or download the source code and python install

Basic use

To download data, the id of the database, dataset and fields are required:

  • To get the list of FAO databases:

    from faodata import faodownload
    databases = faodownload.get_databases()
  • To get the list of FAO datasets in a given database (e.g. faostat):

    database_id = 'faostat'
    datasets = faodownload.get_datasets(database_id)
  • To get the list of FAO fields in a given dataset (e.g. live-prod):

    database_id = 'faostat'
    dataset_id = 'live-prod'
    fields = faodownload.get_fields(database_id, dataset_id)

When all the previous elements are known, the download procedure is

database_id = 'faostat'
dataset_id = 'live-prod'
field_id = 'm5111'

# Define the year (if None, all years are retrieved)
year = 2010

# Define country (if None, all countries are retrieved)
# The country id is the ISO3 code
# see
country_id = None

# Get data
data = faodownload.get_data(database_id, dataset_id, field_id, country=country_id, year=year)

When data is downloaded, it can be displayed on a world map

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import basemap
from faodata import faodownload, faomap

# Download data
database_id = 'faostat'
dataset_id = 'live-prod'
field_id = 'm5111'
year = 2013
data = faodownload.get_data(database_id, dataset_id, field_id, year=year)

# Select data
item = 'Cattle'
idx = data['Item'] == item
data = data.loc[idx, ['country', 'value']]

# Instantiate matplotlib and basemap objects
fig, ax = plt.subplots()
map = basemap.Basemap(projection='robin', \
        lon_0=10, lat_0=50, ax = ax)


# Categorize data according to percentiles
cat = [np.percentile(data['value'], pp) \
        for pp in range(10, 100, 10)]

# Draw plot
faomap.plot(map, data, cat, ndigits=0)
ax.set_title('%s population, %d' % (item, year),

# Add a footer to the figure to
# indicate data source
faomap.mapfooter(fig, database_id, dataset_id, field_id)

More examples in the example folder directory.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

faodata-1.1.tar.gz (193.8 kB view hashes)

Uploaded source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page