Fit Fast, Explain Fast
Project description
# FastExplain > Fit Fast, Explain Fast
## Installing ` pip install fast-explain ` ## Clean Data, Fit ML Models and Explore Results all in one line. FastExplain provides an out-of-the-box tool for analysts to quickly explore data, train and interpret models, with flexibility to fine-tune if needed. - Automated cleaning and fitting of machine learning models with hyperparameter search - Aesthetic display of explanatory methods ready for reporting - Connected interface for all data, models and related explanatory methods
## Quickstart
### Automated Cleaning and Fitting ` python from FastExplain import * df = load_titanic_data() classification = model_data(df, dep_var="Survived", model="ebm") ` ### Aesthetic Display ` python feature_correlation(classification.data.df) ` <img alt=”Feature Correlation” src=”images/feature_correlation.png”>
` python plot_one_way_analysis(classification.data.df, "Age", "Survived", filter = "Sex == 1") ` <img alt=”One Way” src=”images/one_way.png”>
` python plot_ebm_explain(classification.m, classification.data.df, "Age") ` <img alt=”EBM” src=”images/ebm.png”>
` python plot_ale(classification.m, classification.data.xs, "Age", filter = "Sex == 1", dep_name = "Survived") ` <img alt=”ALE” src=”images/ALE.png”>
` python classification_1 = model_data(df, dep_var="Survived", model="rf", hypertune=True, cont_names=['Age'], cat_names = [], hypertune=True) models = [classification.m, classification_1.m] data = [classification.data.xs, classification_1.data.xs] plot_ale(models, data, 'Age', dep_name = "Survived") ` <img alt=”multi_ALE” src=”images/multi_ALE.png”>
### Connected Interface ` python classification_1.plot_one_way_analysis("Age", filter = "Sex == 1") classification_1.plot_ale("Age", filter = "Sex == 1") `
` python classification_1.shap_dependence_plot("Age", filter = "Sex == 1") ` <img alt=”SHAP” src=”images/shap.png”>
` python classification_1.error # {'auc': {'model': {'train': 0.9934332941166654, # 'val': 0.8421607378129118, # 'overall': 0.9665739941840028}}, # 'cross_entropy': {'model': {'train': 0.19279692001978943, # 'val': 0.4600233891109683, # 'overall': 0.24648214781700722}}} `
## Models Supported - Random Forest - XGBoost - Explainable Boosting Machine - ANY Model Class with fit and predict attributes
` python pip install lightgbm `
` python from lightgbm import LGBMClassifier custom_model = model_data(df, 'Survived', model=LGBMClassifier) custom_model.plot_ale("Age") custom_model.shap_dependence_plot("Age") `
## Exploratory Methods Supported: - One-way Analysis - Two-way Analysis - Feature Importance Plots - ALE Plots - Explainable Boosting Methods - SHAP Values - Partial Dependence Plots - Sensitivity Analysis
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
Hashes for fast_explain-0.0.83-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8a031e5de83c7952bf0d4d97d3c520ea591da56e645871afcca0d4de301851bd |
|
MD5 | bf1163487d8a5f4492b32fdc16aa6d8e |
|
BLAKE2b-256 | 5f1f55e5ec2b72800ba5851dcb0a292774cb56ea9dbe023a837520b7a10b194c |