A faster CountVectorizer alternative.
Project description
FastCountVectorizer

FastCountVectorizer is a faster alternative to scikit-learn's CountVectorizer.
Installation
pip install fastcountvectorizer
Documentation
See full documentation.
License
Copyright (c) 2020 Santiago M. Mola
FastCountVectorizer is released under the MIT License.
The following files are included from or derived from third party projects:
fastcountvectorizer.py
is derived from scikit-learn'sscikit-learn/sklearn/feature_extraction/text.py
, licensed under a 3-clause BSD license. The original list of authors and license text can be found in the file header._csr.h
is derived from scipy'sscipy/sparse/sparsetools/csr.h
, licensed under a 3-clause BSD license. The original list of authors and license text can be found in the file header.fastcountvectorizer/thirdparty/tsl
includes thetsl::sparse_map
project, released under the MIT License.fastcountvectorizer/thirdparty
includes thexxHash
project, released under a BSD-2 Clause license.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
fastcountvectorizer-0.1.0.tar.gz
(223.8 kB
view hashes)
Built Distributions
Close
Hashes for fastcountvectorizer-0.1.0.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 86f48c28fd4979e2b98a7e40d5c7fc9a09eeffb8763e4b0208ca6f8a8d2c585f |
|
MD5 | 646006d3cd0d2c95c01af79332013230 |
|
BLAKE2b-256 | e5f279f4a7979707700aa2cff5fc689050d5d6b355130df88c5f111bffadec81 |
Close
Hashes for fastcountvectorizer-0.1.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 236c954367638749598469a8e82c5ba849a035666b6992234e08197a90ea8626 |
|
MD5 | f54d43159bf1abdfc42f3d461cc7d941 |
|
BLAKE2b-256 | d7f666a428fecdae1975bbceea6b8f7af20c8be46b2d01f9f285a6b80f25797e |
Close
Hashes for fastcountvectorizer-0.1.0-cp38-cp38-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6cd43af68a87547bda64175afc01cded96f0b1d5cf3e0f96b5ec2cb334b6f283 |
|
MD5 | 924807d81cab715116aa39a241ad446c |
|
BLAKE2b-256 | 01525e1c903de512dd29f2e10441fc9504cd79aa12fcf15b8215c732dfbaca19 |
Close
Hashes for fastcountvectorizer-0.1.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a1d5992cc9ebdab6250453fa039af2014e53e04df257ec43f3f69cf01fb393e5 |
|
MD5 | 4127522e50f1ffa657ecad81a34b1a45 |
|
BLAKE2b-256 | ab23422553fb3d28e4f876c5dae7c5913c0cb5b04e37bb59a93a93d1b2e9000a |
Close
Hashes for fastcountvectorizer-0.1.0-cp37-cp37m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 572ee409678394ea771a7cbe6d1fe4a244b1df88d913d2fc3443069a687c9d6a |
|
MD5 | cfb8ce875b92c2ddcdaf0c41f9a0fe2b |
|
BLAKE2b-256 | 0d2566c59a5c99bcbacd3918018975851842982b112836aaa31a8e4d3155f150 |
Close
Hashes for fastcountvectorizer-0.1.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e1c82adb07ccdf6c48d91451eae1f1cb9544d11a4f22341fe0e327f1697e4126 |
|
MD5 | 290db96d5574880167815710140da79d |
|
BLAKE2b-256 | b428dd3ba43750af1ad5ce6262ed96e8e5c1c42b20320ac1e203d97c674c3022 |
Close
Hashes for fastcountvectorizer-0.1.0-cp36-cp36m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c4e350ed8bbe10c553dd0be3cc4c94edc17756db717b879a6be2e46f63240868 |
|
MD5 | 615ae14af3675fd1118ba1f7d95c91d4 |
|
BLAKE2b-256 | 4814f3b080bf0140d00e71e11ace78cfb5ba3b53a2c6bf1108125ca0736a5387 |
Close
Hashes for fastcountvectorizer-0.1.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7467dc5f7202db34268a98487ec0b4f9eb91b6f6f645aed24649ffa9c71be1c3 |
|
MD5 | fb0af0bc0b1f5a100895cfb9281c06d3 |
|
BLAKE2b-256 | 4c4f1138faf2152557f460866b88841923a14b76c02f1c5dfed44d13ad61193d |
Close
Hashes for fastcountvectorizer-0.1.0-cp35-cp35m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1573cdc337697cb89c41e85aad91e7a714d77c8517c9e5b33cf512c29abd0ce7 |
|
MD5 | 6e7b204f4f9ac86d1105c5af5dab3e6e |
|
BLAKE2b-256 | 01dd10328bef7dc87ec9ac6a4d7589cef8b6cf60376b4cd638d8f9a4f062a4cf |