a fork of Faster-COCO-Eval modified specifically for the AI-TOD dataset
Project description
Faster-COCO-Eval-AITOD
Disclaimer
This project is a fork of Faster-COCO-Eval modified specifically for the AITOD (ATiny Object Detection in Aerial Images) dataset.
The main modifications include adapting evaluation parameters for tiny object detection and adding LRP (Localization Recall Precision) metric calculation, maintaining compatibility with cocoapi-aitod while significantly improving computation speed.
Key Features
- Optimized evaluation parameters for tiny object detection scenarios
- Added LRP metric calculation consistent with aitodpycocotools
- Significantly faster computation compared to original pycocotools
- Maintains all original Faster-COCO-Eval functionality
- Compatible with AITOD dataset evaluation requirements
Install
Basic implementation identical to pycocotools
pip install faster-coco-eval-aitod
Conda install
conda install conda-forge::faster-coco-eval-aitod
Basic usage
import faster_coco_eval_aitod
# Replace aitodpycocotools with faster_coco_eval_aitod
faster_coco_eval_aitod.init_as_aitodpycocotools()
from faster_coco_eval_aitod import COCO, COCOeval_faster
anno = COCO(str(anno_json))
pred = anno.loadRes(str(pred_json))
val = COCOeval_faster(anno, pred, "bbox")
val.evaluate()
val.accumulate()
val.summarize()
# Access LRP metrics
lrp_metrics = val.stats_lrp
Performance Comparison
For AITOD dataset evaluation, our implementation shows significant speed improvements while maintaining identical results with aitodpycocotools (tested using /test in this project):
| Image Counts | faster-coco-eval-aitod | aitodpycocotools | Speed Improvement |
|---|---|---|---|
| 5000 | 31.7s | 57.7s | +45% |
Feautures
This library provides not only validation functions, but also error visualization functions. Including visualization of errors in the image. You can study in more detail in the test.
Update history
Available via link history.md
License
The original module was licensed with apache 2, so I will continue with the same license. Distributed under the apache version 2.0 license, see license for more information.
Citation
If you use this fork in your research, please cite both this project and original Faster-COCO-Eval:
@article{faster-coco-eval-aitod,
title = {{Faster-COCO-Eval-AITOD}: Faster interpretation of the original aitodpycocotools},
author = {ZhangchiHu},
year = {2025}
}
@article{faster-coco-eval,
title = {{Faster-COCO-Eval}: Faster interpretation of the original COCOEval},
author = {MiXaiLL76},
year = {2024}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file faster-coco-eval-aitod-1.0.2.tar.gz.
File metadata
- Download URL: faster-coco-eval-aitod-1.0.2.tar.gz
- Upload date:
- Size: 51.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
de678a08f8879a248a67a54aed0b4e6d968048559db728d01e0b3c79e1c6b5ab
|
|
| MD5 |
285db3bd994819e512430866af62c6f3
|
|
| BLAKE2b-256 |
db82fc1a8ff464e5d7f4ca5f14d20c31fda2b608673e91a1ee8cb8d4eb09dc4d
|
File details
Details for the file faster_coco_eval_aitod-1.0.2-cp39-cp39-manylinux2014_x86_64.whl.
File metadata
- Download URL: faster_coco_eval_aitod-1.0.2-cp39-cp39-manylinux2014_x86_64.whl
- Upload date:
- Size: 410.5 kB
- Tags: CPython 3.9
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
2c6042c67e544f60f99aaba8e4aced96a122c3cc7a68a5641d9b4c18bbc3f914
|
|
| MD5 |
0cbad7ef7c1e61fbf1f961c5806e8510
|
|
| BLAKE2b-256 |
e63302b1d6122f34c2d0d34314a2d461b169f122624420ffcd82e1551df58a9a
|