Skip to main content

a fork of Faster-COCO-Eval modified specifically for the AI-TOD dataset

Project description

Faster-COCO-Eval-AITOD

PyPI PyPI Downloads

license

Disclaimer

This project is a fork of Faster-COCO-Eval modified specifically for the AITOD (ATiny Object Detection in Aerial Images) dataset.

The main modifications include adapting evaluation parameters for tiny object detection and adding LRP (Localization Recall Precision) metric calculation, maintaining compatibility with cocoapi-aitod while significantly improving computation speed.

Key Features

  • Optimized evaluation parameters for tiny object detection scenarios
  • Added LRP metric calculation consistent with aitodpycocotools
  • Significantly faster computation compared to original pycocotools
  • Maintains all original Faster-COCO-Eval functionality
  • Compatible with AITOD dataset evaluation requirements

Install

Basic implementation identical to pycocotools

pip install faster-coco-eval-aitod

Conda install

conda install conda-forge::faster-coco-eval-aitod

Basic usage

import faster_coco_eval_aitod

# Replace aitodpycocotools with faster_coco_eval_aitod
faster_coco_eval_aitod.init_as_aitodpycocotools()

from faster_coco_eval_aitod import COCO, COCOeval_faster

anno = COCO(str(anno_json))
pred = anno.loadRes(str(pred_json))

val = COCOeval_faster(anno, pred, "bbox")
val.evaluate()
val.accumulate()
val.summarize()
# Access LRP metrics
lrp_metrics = val.stats_lrp

Performance Comparison

For AITOD dataset evaluation, our implementation shows significant speed improvements while maintaining identical results with aitodpycocotools (tested using /test in this project):

Image Counts faster-coco-eval-aitod aitodpycocotools Speed Improvement
5000 31.7s 57.7s +45%

Feautures

This library provides not only validation functions, but also error visualization functions. Including visualization of errors in the image. You can study in more detail in the test.

Update history

Available via link history.md

License

The original module was licensed with apache 2, so I will continue with the same license. Distributed under the apache version 2.0 license, see license for more information.

Citation

If you use this fork in your research, please cite both this project and original Faster-COCO-Eval:

@article{faster-coco-eval-aitod,
  title   = {{Faster-COCO-Eval-AITOD}: Faster interpretation of the original aitodpycocotools},
  author  = {ZhangchiHu},
  year    = {2025}
}

@article{faster-coco-eval,
  title   = {{Faster-COCO-Eval}: Faster interpretation of the original COCOEval},
  author  = {MiXaiLL76},
  year    = {2024}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

faster-coco-eval-aitod-1.0.2.tar.gz (51.3 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

File details

Details for the file faster-coco-eval-aitod-1.0.2.tar.gz.

File metadata

  • Download URL: faster-coco-eval-aitod-1.0.2.tar.gz
  • Upload date:
  • Size: 51.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for faster-coco-eval-aitod-1.0.2.tar.gz
Algorithm Hash digest
SHA256 de678a08f8879a248a67a54aed0b4e6d968048559db728d01e0b3c79e1c6b5ab
MD5 285db3bd994819e512430866af62c6f3
BLAKE2b-256 db82fc1a8ff464e5d7f4ca5f14d20c31fda2b608673e91a1ee8cb8d4eb09dc4d

See more details on using hashes here.

File details

Details for the file faster_coco_eval_aitod-1.0.2-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

  • Download URL: faster_coco_eval_aitod-1.0.2-cp39-cp39-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 410.5 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for faster_coco_eval_aitod-1.0.2-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2c6042c67e544f60f99aaba8e4aced96a122c3cc7a68a5641d9b4c18bbc3f914
MD5 0cbad7ef7c1e61fbf1f961c5806e8510
BLAKE2b-256 e63302b1d6122f34c2d0d34314a2d461b169f122624420ffcd82e1551df58a9a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page