Skip to main content

Tools for fast and robust univariate and multivariate kernel density estimation

Project description

PyPI version GitHub Workflow Status (with event) Open In Colab

fastKDE

Software Overview

fastKDE calculates a kernel density estimate of arbitrarily dimensioned data; it does so rapidly and robustly using recently developed KDE techniques. It does so with statistical skill that is as good as state-of-the-science 'R' KDE packages, and it does so 10,000 times faster for bivariate data (even better improvements for higher dimensionality).

Please cite the following papers when using this method:

  • O’Brien, T. A., Kashinath, K., Cavanaugh, N. R., Collins, W. D. & O’Brien, J. P. A fast and objective multidimensional kernel density estimation method: fastKDE. Comput. Stat. Data Anal. 101, 148–160 (2016). http://dx.doi.org/10.1016/j.csda.2016.02.014
  • O’Brien, T. A., Collins, W. D., Rauscher, S. A. & Ringler, T. D. Reducing the computational cost of the ECF using a nuFFT: A fast and objective probability density estimation method. Comput. Stat. Data Anal. 79, 222–234 (2014). http://dx.doi.org/10.1016/j.csda.2014.06.002

Example usage:

For a standard PDF

""" Demonstrate the first README example. """
import numpy as np
import fastkde
import matplotlib.pyplot as plt

#Generate two random variables dataset (representing 100,000 pairs of datapoints)
N = int(1e5)
x = 50*np.random.normal(size=N) + 0.1
y = 0.01*np.random.normal(size=N) - 300

#Do the self-consistent density estimate
PDF = fastkde.pdf(x, y, var_names = ['x', 'y'])

PDF.plot();

For a conditional PDF

The following code generates samples from a non-trivial joint distribution

#***************************
# Generate random samples
#***************************
# Stochastically sample from the function underlyingFunction() (a sigmoid):
# sample the absicissa values from a gamma distribution
# relate the ordinate values to the sample absicissa values and add
# noise from a normal distribution

#Set the number of samples
numSamples = int(1e6)

#Define a sigmoid function
def underlyingFunction(x,x0=305,y0=200,yrange=4):
        return (yrange/2)*np.tanh(x-x0) + y0

xp1,xp2,xmid = 5,2,305  #Set gamma distribution parameters
yp1,yp2 = 0,12          #Set normal distribution parameters (mean and std)

#Generate random samples of X from the gamma distribution
x = -(np.random.gamma(xp1,xp2,int(numSamples))-xp1*xp2) + xmid
#Generate random samples of y from x and add normally distributed noise
y = underlyingFunction(x) + np.random.normal(loc=yp1,scale=yp2,size=numSamples)

Now that we have the x,y samples, the following code calculates the conditional

#***************************
# Calculate the conditional
#***************************
# note that conditiong variables ('x' in this case) are listed first
# in the var_names argument
cPDF = fastkde.conditional(y, x, var_names = ['x', 'y'])

The following plot shows the results:

#***************************
# Plot the conditional
#***************************
fig,axs = plt.subplots(1,2,figsize=(10,5), sharex=True, sharey=True)

#Plot a scatter plot of the incoming data
axs[0].plot(x,y,'k.',alpha=0.1)
axs[0].set_title('Original (x,y) data')
axs[0].set_xlabel('x')
axs[0].set_ylabel('y')

#Draw a contour plot of the conditional
cPDF.plot(ax = axs[1], add_colorbar = False)
#Overplot the original underlying relationship
axs[1].plot(cPDF.x,underlyingFunction(cPDF.x),linewidth=3,linestyle='--',alpha=0.5)
axs[1].set_title('P(y|x)')

plt.savefig('conditional_demo.png')
plt.show()

Image of conditional distribution demonstration

Kernel Density Estimate for Specific Points

To see the KDE values at specified points (not necessarily those that were used to generate the KDE):

""" Demonstrate using the pdf_at_points function. """""
import fastkde
train_x = 50*np.random.normal(size=100) + 0.1
train_y = 0.01*np.random.normal(size=100) - 300

test_x = 50*np.random.normal(size=100) + 0.1
test_y = 0.01*np.random.normal(size=100) - 300

test_points = list(zip(test_x, test_y))
test_point_pdf_values = fastkde.pdf_at_points(train_x, train_y, list_of_points = test_points)

Note that this method can be significantly slower than calls to fastkde.pdf() since it does not benefit from using a fast Fourier transform during the final stage in which the PDF estimate is transformed from spectral space into data space, whereas fastkde.pdf() does.

How do I get set up?

python -m pip install fastkde

Copyright Information

See LICENSE.txt

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastkde-2.1.5.tar.gz (1.4 MB view details)

Uploaded Source

Built Distributions

fastkde-2.1.5-cp313-cp313-win_arm64.whl (567.9 kB view details)

Uploaded CPython 3.13Windows ARM64

fastkde-2.1.5-cp313-cp313-win_amd64.whl (596.4 kB view details)

Uploaded CPython 3.13Windows x86-64

fastkde-2.1.5-cp313-cp313-musllinux_1_2_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

fastkde-2.1.5-cp313-cp313-musllinux_1_2_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ ARM64

fastkde-2.1.5-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

fastkde-2.1.5-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

fastkde-2.1.5-cp313-cp313-macosx_11_0_arm64.whl (602.4 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

fastkde-2.1.5-cp313-cp313-macosx_10_13_x86_64.whl (618.8 kB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

fastkde-2.1.5-cp312-cp312-win_arm64.whl (568.5 kB view details)

Uploaded CPython 3.12Windows ARM64

fastkde-2.1.5-cp312-cp312-win_amd64.whl (596.9 kB view details)

Uploaded CPython 3.12Windows x86-64

fastkde-2.1.5-cp312-cp312-musllinux_1_2_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

fastkde-2.1.5-cp312-cp312-musllinux_1_2_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ ARM64

fastkde-2.1.5-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

fastkde-2.1.5-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

fastkde-2.1.5-cp312-cp312-macosx_11_0_arm64.whl (604.3 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

fastkde-2.1.5-cp312-cp312-macosx_10_13_x86_64.whl (620.9 kB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

fastkde-2.1.5-cp311-cp311-win_arm64.whl (571.6 kB view details)

Uploaded CPython 3.11Windows ARM64

fastkde-2.1.5-cp311-cp311-win_amd64.whl (599.6 kB view details)

Uploaded CPython 3.11Windows x86-64

fastkde-2.1.5-cp311-cp311-musllinux_1_2_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

fastkde-2.1.5-cp311-cp311-musllinux_1_2_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ ARM64

fastkde-2.1.5-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

fastkde-2.1.5-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

fastkde-2.1.5-cp311-cp311-macosx_11_0_arm64.whl (607.9 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

fastkde-2.1.5-cp311-cp311-macosx_10_9_x86_64.whl (625.1 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

fastkde-2.1.5-cp310-cp310-win_arm64.whl (572.4 kB view details)

Uploaded CPython 3.10Windows ARM64

fastkde-2.1.5-cp310-cp310-win_amd64.whl (599.5 kB view details)

Uploaded CPython 3.10Windows x86-64

fastkde-2.1.5-cp310-cp310-musllinux_1_2_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

fastkde-2.1.5-cp310-cp310-musllinux_1_2_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ ARM64

fastkde-2.1.5-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

fastkde-2.1.5-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

fastkde-2.1.5-cp310-cp310-macosx_11_0_arm64.whl (607.0 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

fastkde-2.1.5-cp310-cp310-macosx_10_9_x86_64.whl (624.8 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

fastkde-2.1.5-cp39-cp39-win_arm64.whl (573.1 kB view details)

Uploaded CPython 3.9Windows ARM64

fastkde-2.1.5-cp39-cp39-win_amd64.whl (600.6 kB view details)

Uploaded CPython 3.9Windows x86-64

fastkde-2.1.5-cp39-cp39-musllinux_1_2_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ x86-64

fastkde-2.1.5-cp39-cp39-musllinux_1_2_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ ARM64

fastkde-2.1.5-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

fastkde-2.1.5-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

fastkde-2.1.5-cp39-cp39-macosx_11_0_arm64.whl (608.1 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

fastkde-2.1.5-cp39-cp39-macosx_10_9_x86_64.whl (626.0 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

File details

Details for the file fastkde-2.1.5.tar.gz.

File metadata

  • Download URL: fastkde-2.1.5.tar.gz
  • Upload date:
  • Size: 1.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for fastkde-2.1.5.tar.gz
Algorithm Hash digest
SHA256 40e8d1a50ace4df18f23db13ded8920aee805a860c49df488947f02c18830dfb
MD5 46a753f9ba85c7a9fc2e0eea2cb3ff8d
BLAKE2b-256 15fe2d3b51fca4dd1eee7ac1bf5b53255e97e9994a1eb91856473ff3c00afe82

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp313-cp313-win_arm64.whl.

File metadata

  • Download URL: fastkde-2.1.5-cp313-cp313-win_arm64.whl
  • Upload date:
  • Size: 567.9 kB
  • Tags: CPython 3.13, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for fastkde-2.1.5-cp313-cp313-win_arm64.whl
Algorithm Hash digest
SHA256 c159ab119157c77b4ba841420667931dbbb4aa9d3248fcae079596d053de118d
MD5 1b15e47ed18f474ce14ce7d6fce25501
BLAKE2b-256 d28780a84c0a2e486342f00368fc78959edbe32fd63e4a85308ce8c5bb115735

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: fastkde-2.1.5-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 596.4 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for fastkde-2.1.5-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 2f08c44cd2d0e3f657a6aa6ea283c191ee571ae35ef80dc75918ce2aaf61d745
MD5 c59387f747bdcd3d0e285ab59fa99438
BLAKE2b-256 ed490b3dd177fe801940f7b0fc05d5823cdbb5f3626ee5df85ed665ea0b3f60c

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for fastkde-2.1.5-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4dfffee24bca68042bccd501780880308c531e2dc9afb2948169061ee72b29b1
MD5 71f0c67e0f0d383f0fdb641c555a3628
BLAKE2b-256 4888dc9a8ae3cd942e05903232483990e9c9de35852261326b7b2daacfb45f50

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for fastkde-2.1.5-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 eff54bad92cf88e4482aace36e41147defc02ae5f28504f3c8c83e99ee1e99b1
MD5 c2eb5e53d0dad2b37155f0385f06a6ab
BLAKE2b-256 1c350d6f2e023a1085d6790eb79dc34630ca162813d4866785e3033844f1a48d

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fastkde-2.1.5-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 76065387205e554f869784f2afbe584eb5a2ab3bc941228dc08b61da77851338
MD5 9bfe6743e080f91584f28c94f6d3af0e
BLAKE2b-256 488ef2bea51643f9f4cde8920c1939fc03c65984a75f61ee3196a8a9b7f2c337

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for fastkde-2.1.5-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 bc53d88224747f45a7736ae60d1fdd07f8c993849702a40505f96a0b5cd348ad
MD5 f6f8a51b53ebf18f8868382789bf2773
BLAKE2b-256 9cc28016a8ad5e5568f4eec3042a7b284ed357586122bb992e1c4c9c50be1656

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastkde-2.1.5-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 93de863a830a2c951fa7fb3a71fe01b512b3294478f98fdc4869d381e9d19261
MD5 b1dac3b9ba1fee410f02bc048cdca8c1
BLAKE2b-256 621cb766ad46117c17e593a9633085bd18fbdf180fab7bcb0a15c90d1c21e13d

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for fastkde-2.1.5-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 03dbda690c2131054edc63b9bda560067884a8dab379af76d025ec2b18cc8d12
MD5 2d8e3ba8bb5f6b4e57c3b09044567a25
BLAKE2b-256 2518b7209dbfcaa6b36207fe0d32af50721aefa6a3c438f7bd643a61ee4ca19b

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: fastkde-2.1.5-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 568.5 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for fastkde-2.1.5-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 fe30df0dd24c7b824f8d67937c91e4f7d4587130812410692fa3610e2927892c
MD5 935405bf946cbfb6ca21a3201074a8d4
BLAKE2b-256 190d09665bf0a0a1e602240c5705606de61dd697672faed367620be8710f01a0

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: fastkde-2.1.5-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 596.9 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for fastkde-2.1.5-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 1449b258acb0647b638b6c5cb5eabecd1c80c095e703f89c93071ae15390af37
MD5 4b287145669407f258c5b7ad75c9780c
BLAKE2b-256 c03738fdd6e6207e60dda2777607be332de252de6ebfd38a723711c91c0e61d7

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for fastkde-2.1.5-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 8164c4b3cab8cf76c7ae353102b4f4c3447d2c68d7d3d99a56541ca88fdb8c0d
MD5 76795eccd7f13be4972e382220528d12
BLAKE2b-256 e288dc0e6aea8df7da675c50d7e26504d4522e07a844ca02874b21e266beee2d

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for fastkde-2.1.5-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 08a52993de49d38d6d3bafc0213126c700cd18e9a4fc75b10d60b53778090570
MD5 9c81bd1a28b14d3ff7c9d31ac6ebef0b
BLAKE2b-256 4e4dd85f22e6ed5178a62848191746d7e9d77db69268a0754cad34168d50e763

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fastkde-2.1.5-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d54f6c8e6ad517eaa27918718bf6c0a7e46cfaa1887e4f06f58b95ed456c119b
MD5 1c831354827a79e1d30c83f91cadb725
BLAKE2b-256 620a8a79cffc744a084d596e48419888b308936e3679474bb89a67ba7f9b3dc3

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for fastkde-2.1.5-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d42e50af189d5dc5531e78034762ddb72886169f5b8ad18817676d89ec87dc8e
MD5 91820edff965c3dc282fba1bc2897d23
BLAKE2b-256 ce6a38e4ef34eaaa9294c034a8f5371882b3947453fe84752d33a2274dba66dd

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastkde-2.1.5-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c6a9c0f0c5c659b61e5ef34114d8821697d0b6a3ea8c8d14c1bb5dd2743f8cd4
MD5 97406e0197d75c1c8630f6c372726093
BLAKE2b-256 a89b8c854d2d87e03846415f7d870fcfbdb406a57d45fb451b5d7d6484b4219b

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for fastkde-2.1.5-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 3fd776e00694bb7cb3717e558b6c909f7923536f603e00741edf4160bb256e34
MD5 d49bdbffbdd6364b72e094e90bc94b8b
BLAKE2b-256 96a064c7914dafc0cff5ac34095666f91bcdc1a9dea671d46c03900f6600665f

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: fastkde-2.1.5-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 571.6 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for fastkde-2.1.5-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 2acb5b82704151e9f5abf5a2480774024fdf899310dc3c016636436f4ee3b186
MD5 dfbe020a5430964927d40e79e9386e54
BLAKE2b-256 d2ca43c9ff494a0576f7dfa187c52fcd5b06840f84bc1e65803412067b2700a9

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: fastkde-2.1.5-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 599.6 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for fastkde-2.1.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d99f046d126f630dae46c1ba7f97292c1a826140b4142cbed66de1b2f1d0c418
MD5 2bd63591e4eba13f85912f763945a6f2
BLAKE2b-256 c4ab30050c4ee2174ad8ee54c7db0a3ceafe5121655f0d7f8bc35c64e800f97b

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for fastkde-2.1.5-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 fe9b256f4d0d8752474c269b89066333c98dc0f5f8eaccba00f82d54b116aead
MD5 045c2814c70d5aeef41138d6315187ef
BLAKE2b-256 d49cee31135d40c0771b36b0b083f2b34f75769f6228df55d58418ab27cc98d8

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for fastkde-2.1.5-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 799ea3d03c0e3eef41cf061168509e958163759bd8589ea1a58119079ca2935b
MD5 ebc87a75a8ceae4ba674b5e676a774fd
BLAKE2b-256 3ad68d8d789a47c27cf269278e0825442d75f3ef78667f6638c806844de1e66f

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fastkde-2.1.5-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 58ab9b0d42e76cf9726b2b85e369f23d270a9fc375978652e0b313d2d2ee4c76
MD5 8f03826f65ac217439bdf0b2aad82dbb
BLAKE2b-256 5ae507113eafbbad41942fb9921b3ac00dc2eb3b4144a9244cdf01c9edbea261

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for fastkde-2.1.5-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 7d5f8a420812507bc084426373c602f6a0ea2fc7f4109a245aff6670e3551e13
MD5 e9fa0588d4e8e0e71d17e9e0232adec0
BLAKE2b-256 36dcf922aaa211500a87983a27e95b3ab42d193b144cd84e277eb5126ca6c096

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastkde-2.1.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e1a32e334bbddd884d4af5dd32771b16a27518fa2e337c2e4f1f154a6bc1b5d7
MD5 afde9193b7027bd35c49620e1a6718fd
BLAKE2b-256 6be439cbd64ef334b964a44815fafc34d45b9d63bd51d82bfea985702cf8aec6

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastkde-2.1.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6edf257e61f731a46b4c0b982af7f770fae23d89335b4ad385dc1f182eef5514
MD5 e9369361739679eeae8addb375c2c301
BLAKE2b-256 3b43b7cca044e2cb1767bd71062f71c3c88f4627350403a26cda01a3750e3ac8

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: fastkde-2.1.5-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 572.4 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for fastkde-2.1.5-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 0d4f47b25ae044610e9b83daddf0b442c565af057bd9de0b756490f99bdb7c2f
MD5 36b8e76cd8c79c36e82e16a6f6f9c3b0
BLAKE2b-256 441a14a82a37806a431f45d0151b0db87c3c17d51ec303e473deefe9730286e0

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fastkde-2.1.5-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 599.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for fastkde-2.1.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 456947b053957254a7a7902bbb66b51104afa6a6ef4c82659f6a8f1560bf7497
MD5 5e8d9196ccd846365c4eadae1969393f
BLAKE2b-256 3e22e64fab84c5e0cb95a01ce54fc6c20dfb9ae9e3ff1e1a4eaf3ee7e494b508

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for fastkde-2.1.5-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ea7e0485df56c7cf32e5d376c0cd1802c50a53be0bc39535f5b06711a3679aaa
MD5 405af67d016ba738a92ef0604debdb16
BLAKE2b-256 0ec70529560abc9c88281d8ed757f2216eecaaba83bae3dc9a0c05a4e3cd62d7

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for fastkde-2.1.5-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 c193e32956c3ee0437153d40b155b66a758b0636313cb81a60bf00b20d9824b9
MD5 819cb3d8abe558fc41f61545e49b81aa
BLAKE2b-256 3b95117070b377f642214f229fec5b73122116f20067c560c9d1eb767362589a

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fastkde-2.1.5-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b5c9a0b503ce906943ae48e5c650d9b4def20a040e52ed96b7cb059959f7a6cb
MD5 4aeb4a3ea0b735672edd0570116033fc
BLAKE2b-256 467d24359ec8cf7a03591bcc789fb61e5eccb3a750509b855cff28eaef0f7388

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for fastkde-2.1.5-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 85b5f49c82b81b5988203d205d330d7fc3b63010bb93590420991a38b0ccaf0c
MD5 c8ebf159a6b456bc5de5ef80760e7411
BLAKE2b-256 8263812a254561c9af053912d4960e6558ace9016d78dce5449eba2fa8562a41

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastkde-2.1.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1ca1c7b099319adb1e5bff96c8259d85d1370e9f2bba5dafe98a604e4028e8e8
MD5 1166028977893c26d9a16b253a039a3e
BLAKE2b-256 df40f31b0c32c70cdc0a771c0f84b34dacf23615a71f980c615a298c461b01b9

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastkde-2.1.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6236c7bdfa3dc516f1156b4660d315668477bd6d04fa080b54e2a82a8e561930
MD5 be438e3f1db9057e8dadd770e399c516
BLAKE2b-256 9f5c4a26aa1b214d1d4dafaf587c2e97036335d89659e4da0984f200fcec44ca

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: fastkde-2.1.5-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 573.1 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for fastkde-2.1.5-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 ad1a42c0c5472b311b44ddd72af2f0b3fb88d4dbcb48ab0f0db58a0190f98c8b
MD5 d363379daf9dc6058e6a86f1671a0d00
BLAKE2b-256 67c6b055d86900076d5ab661852f29d96f75bb1fc6d956bbfe6b094833de7c0e

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fastkde-2.1.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 600.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for fastkde-2.1.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e6eb081854f03cc9b8af1a67db2e652112fdf128abec4cce99ae3cbcdcadfd6f
MD5 622961fd204b5838aa2552366690058f
BLAKE2b-256 ccddff905b3772063cf1773fbdefe5da9864f60feb2ad126b149ab1a81c2ed6e

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for fastkde-2.1.5-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f31587ab041650d0e1d32408c71f84a8b09d3e3691fd7d80c6c1b7dd56c0a637
MD5 235e107da8229b32071c99935c048310
BLAKE2b-256 de23f7a5dc0c6719547f7e7ce56d40f7942782014e84da6e01d1d548cdab4b2a

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for fastkde-2.1.5-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 cba0c7f7afd42f3cccdffacc80d5f16452dc2439baafd408fd5881b868ad88a4
MD5 a01a0ff3002ca0e489f250cd26f1e4e6
BLAKE2b-256 51f336f95a409a188bddd6db5bff16f0bb3674e62cc9d7e807722240feb99f73

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fastkde-2.1.5-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b1c9be5a4da134cb2252e863f2a97e75db66be5dd0525ce8cee0ed3045aa1246
MD5 5d3629815a4a1f9e9e6f3de9c4ae1112
BLAKE2b-256 de270915c4fa472e24ed31518cd0f4ce12e1604da809d1e897df3a5780996465

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for fastkde-2.1.5-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d458d5bcebc8271f51314b73457e79288418dea389ec8de38d996891a6c171f5
MD5 701cec12e7301b49ac324076979db8a8
BLAKE2b-256 70dd058c54cbb345c4009d4462569a469a407b9a1affec2c3314e7f59fc62a9e

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastkde-2.1.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0e4038db36abfcd4aa93c52cc7cae73826f8a83e425411eb058fb3e64d903e76
MD5 394ac63d5b41a9bf8424c3815327e7ed
BLAKE2b-256 dbf5e88345ab55335a89ebe85b091e382d01279ab891234889d9a28692400a6c

See more details on using hashes here.

File details

Details for the file fastkde-2.1.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastkde-2.1.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 601cc36d730347881645c48ba757c1f37757dde5e124f98a0aaef526c81949aa
MD5 94c6dcd4e8c0795b6b920fd639775e72
BLAKE2b-256 b559ae786eee3467bf369827355011886c55984d268077d9f1c4dead50c08125

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page