Fast Laplacian Eigenmaps for dimensionality reduction.
Project description
Fast Laplacian Eigenmaps in python
Open-source Laplacian Eigenmaps for dimensionality reduction of large data in python. Comes with an wrapper for NMSlib to compute approximate-nearest-neighbors. Performs several times faster than the default scikit-learn implementation.
Installation
You'll need NMSlib for using this package properly. Installing it with no binaries is recommended if your CPU supports advanced instructions (it problably does):
pip3 install --no-binary :all: nmslib
Along with requirements:
pip3 install numpy pandas scipy scikit-learn
Then you can install this package with pip:
pip3 install fastlapmap
Usage
See the following example with the handwritten digits data. Here, I visually compare results from the scikit-learn Laplacian Eigenmaps implementation to those from my implementation.
Note that this implementation contains two similarity-learning algorithms: anisotropic diffusion maps and fuzzy simplicial sets.
# Import libraries
import numpy as np
import matplotlib.pyplot as plt
from sklearn.manifold import SpectralEmbedding
from fastlapmap import LapEigenmap
# Load some data
from sklearn.datasets import load_digits
digits = load_digits()
data = digits.data
# Define hyperparameters
N_EIGS=2
N_NEIGHBORS=10
N_JOBS=10
sk_se = SpectralEmbedding(n_components=N_EIGS, n_neighbors=N_NEIGHBORS, n_jobs=N_JOBS).fit_transform(data)
flapmap_diff = LapEigenmap(data, n_eigs=2, similarity='diffusion', norm_laplacian=True, k=N_NEIGHBORS, n_jobs=N_JOBS)
flapmap_fuzzy = LapEigenmap(data, n_eigs=2, similarity='fuzzy', norm_laplacian=True, k=N_NEIGHBORS, n_jobs=N_JOBS)
fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
fig.suptitle('Handwritten digits data:', fontsize=24)
ax1.scatter(sk_se[:, 0], sk_se[:, 1], c=digits.target, cmap='Spectral', s=5)
ax1.set_title('Sklearn\'s Laplacian Eigenmaps', fontsize=20)
ax2.scatter(flapmap_diff[:, 0], flapmap_diff[:, 1], c=digits.target, cmap='Spectral', s=5)
ax2.set_title('Fast Laplacian Eigenmaps with diffusion harmonics', fontsize=20)
ax3.scatter(flapmap_fuzzy[:, 0], flapmap_fuzzy[:, 1], c=digits.target, cmap='Spectral', s=5)
ax3.set_title('Fast Laplacian Eigenmaps with fuzzy simplicial sets', fontsize=20)
plt.show()
As we can see, results are nearly identical.
Parameters
data
: numpy.ndarray, pandas.DataFrame or scipy.sparse.csr_matrix Input data. By default will use nmslib for
approximate nearest-neighbors, which works both on numpy arrays and sparse matrices (faster and cheaper option).
Alternatively, users can provide a precomputed affinity matrix by stating metric='precomputed'
.
n_eigs
: int (optional, default 10).
Number of eigenvectors to decompose the graph Laplacian into.
k
: int (optional, default 10).
Number of k-nearest-neighbors to use when computing affinities.
metric
: str (optional, default 'euclidean').
which metric to use when computing neighborhood distances. Defaults to 'euclidean'.
Accepted metrics include:
-'sqeuclidean'
-'euclidean'
-'l1'
-'lp' - requires setting the parameter p
- equivalent to minkowski distance
-'cosine'
-'angular'
-'negdotprod'
-'levenshtein'
-'hamming'
-'jaccard'
-'jansen-shan'
M
: int (optional, default 10).
defines the maximum number of neighbors in the zero and above-zero layers during HSNW
(Hierarchical Navigable Small World Graph). However, the actual default maximum number
of neighbors for the zero layer is 2*M. A reasonable range for this parameter
is 5-100. For more information on HSNW, please check https://arxiv.org/abs/1603.09320.
HSNW is implemented in python via NMSlib. Please check more about NMSlib at https://github.com/nmslib/nmslib.
efC
: int (optional, default 20).
A 'hnsw' parameter. Increasing this value improves the quality of a constructed graph
and leads to higher accuracy of search. However this also leads to longer indexing times.
A reasonable range for this parameter is 10-500.
efS
: int (optional, default 100).
A 'hnsw' parameter. Similarly to efC, increasing this value improves recall at the
expense of longer retrieval time. A reasonable range for this parameter is 10-500.
n_jobs
: int (optional, default 1)
How many threads to use in approximate-nearest-neighbors computation.
similarity
: str (optional, default 'diffusion').
Which algorithm to use for similarity learning. Options are diffusion harmonics ('diffusion')
, fuzzy simplicial sets ('fuzzy') and continuous k-nearest-neighbors ('cknn').
norm_laplacian
: bool (optional, default True).
Whether to renormalize the graph Laplacian.
return_evals
: bool (optional, default False).
Whether to also return the eigenvalues in a tuple of eigenvectors, eigenvalues. Defaults to False.
verbose
: bool (optional, default False).
Whether to report information on the current progress of the algorithm.
Benchmark
See the runtime comparison between this implementation and scikit-learn:
## Load benchmark function:
from fastlapmap.benchmark import runtime_benchmark
# Load data
from sklearn.datasets import load_digits
digits = load_digits()
data = digits.data
# Define hyperparameters
N_EIGS = 2
N_NEIGHBORS = 10
N_JOBS = 10
SIZES = [1000, 5000, 10000, 25000, 50000, 100000]
N_RUNS = 3
runtime_benchmark(data,
n_eigs=N_EIGS,
n_neighbors=N_NEIGHBORS,
n_jobs=N_JOBS,
sizes=SIZES,
n_runs=N_RUNS)
As you can see, the diffusion harmoics model is the fastest, followed closely by fuzzy simplicial sets. Both outperform scikit-learn default implementation and escalate linearly with sample size.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Hashes for fastlapmap-0.1.2-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 03c3527abb2e605066923738e879921aad4eea0872906534a5c2af95a435cc35 |
|
MD5 | a293a4b62c135878fab880d2e1077b86 |
|
BLAKE2b-256 | 2319cc7278c95f7dd302a7983e2f88e3d28e563ba857e2e8bb7475b17c156ccc |