Skip to main content

Super-fast and clean conversions to numbers.

Project description

https://img.shields.io/pypi/v/fastnumbers.svg https://img.shields.io/pypi/pyversions/fastnumbers.svg https://img.shields.io/pypi/l/fastnumbers.svg https://github.com/SethMMorton/fastnumbers/workflows/Tests/badge.svg https://codecov.io/gh/SethMMorton/fastnumbers/branch/master/graph/badge.svg

Super-fast and clean conversions to numbers.

fastnumbers is a module with the following three objectives (in order of decreasing importance as to why the module was created):

  1. Provide a set of convenience functions that wrap the above int and float replacements and provides easy, concise, powerful, fast and flexible error handling.

  2. Provide a set of functions that can be used to rapidly identify if an input could be converted to int or float.

  3. Provide drop-in replacements for the Python built-in int and float that on average are up to 2x faster. These functions should behave identically to the Python built-ins except for a few specific corner-cases as mentioned in the API documentation for those functions.

    • PLEASE read the quick start for these functions to fully understand the caveats before using them.

NOTICE: As of fastnumbers version 3.0.0, only Python >= 3.5 is supported.

Quick Start

There are three broad categories of functions exposed by fastnumbers. The below quick start will demonstrate each of these categories. The quick start is “by example”, and will show a sample interactive session using the fastnumbers API.

Error-Handling Functions

fast_float will be used to demonstrate the functionality of the fast_* functions.

>>> from fastnumbers import fast_float
>>> # Convert string to a float
>>> fast_float('56.07')
56.07
>>> # Integers are converted to floats
>>> fast_float(54)
54.0
>>>
>>> # Unconvertable string returned as-is by default
>>> fast_float('bad input')
'bad input'
>>> # Unconvertable strings can trigger a default value
>>> fast_float('bad input', default=0)
0
>>> # 'default' is also the first optional positional arg
>>> fast_float('bad input', 0)
0
>>>
>>> # One can ask inf or nan to be substituted with another value
>>> fast_float('nan')
nan
>>> fast_float('nan', nan=0.0)
0.0
>>> fast_float(float('nan'), nan=0.0)
0.0
>>> fast_float('56.07', nan=0.0)
56.07
>>>
>>> # The default built-in float behavior can be triggered with
>>> # "raise_on_invalid" set to True.
>>> fast_float('bad input', raise_on_invalid=True) #doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
  ...
ValueError: invalid literal for float(): bad input
>>>
>>> # A function can be used to return an alternate value for invalid input
>>> fast_float('bad input', on_fail=len)
9
>>> fast_float(54, on_fail=len)
54.0
>>>
>>> # Single unicode characters can be converted.
>>> fast_float('\u2164')  # Roman numeral 5 (V)
5.0
>>> fast_float('\u2466')  # 7 enclosed in a circle
7.0

fast_int behaves the same as fast_float, but for integers.

>>> from fastnumbers import fast_int
>>> fast_int('1234')
1234
>>> fast_int('\u2466')
7

fast_real is like fast_float or fast_int depending on if there is any fractional component of thi return value.

>>> from fastnumbers import fast_real
>>> fast_real('56')
56
>>> fast_real('56.0')
56
>>> fast_real('56.0', coerce=False)
56.0
>>> fast_real('56.07')
56.07
>>> fast_real(56.07)
56.07
>>> fast_real(56.0)
56
>>> fast_real(56.0, coerce=False)
56.0
>>>
>>>

fast_forceint always returns an integer.

>>> from fastnumbers import fast_forceint
>>> fast_forceint('56')
56
>>> fast_forceint('56.0')
56
>>> fast_forceint('56.07')
56
>>> fast_forceint(56.07)
56

About the on_fail option

The on_fail option is a way for you to do anything in the event that the given input cannot be converted to a number. Here are a couple of ideas to get you thinking.

>>> from fastnumbers import fast_float
>>> # Simple case, send the input through some function to generate a number.
>>> fast_float('invalid input', on_fail=lambda x: float(x.count('i')))  # count the 'i's
3.0
>>>
>>>
>>>
>>> # Suppose we know that our input could either be a number, or if not
>>> # then we know we just have to strip off parens to get to the number
>>> # e.g. the input could be '45' or '(45)'. Also, suppose that if it
>>> # still cannot be converted to a number we want to raise an exception.
>>> def strip_parens_and_try_again(x):
...     return fast_float(x.strip('()'), raise_on_invalid=True)
...
>>> fast_float('45', on_fail=strip_parens_and_try_again)
45.0
>>> fast_float('(45)', on_fail=strip_parens_and_try_again)
45.0
>>> fast_float('invalid input', on_fail=strip_parens_and_try_again) #doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
  ...
ValueError: invalid literal for float(): invalid input
>>>
>>>
>>>
>>> # Suppose that whenever an invalid input is given, it needs to be
>>> # logged and then a default value is returned.
>>> def log_and_default(x, log_method=print, default=0.0):
...     log_method("The input {!r} is not valid!".format(x))
...     return default
...
>>> fast_float('45', on_fail=log_and_default)
45.0
>>> fast_float('invalid input', on_fail=log_and_default)
The input 'invalid input' is not valid!
0.0
>>> fast_float('invalid input', on_fail=lambda x: log_and_default(x, default=float('nan')))
The input 'invalid input' is not valid!
nan

Checking Functions

isfloat will be used to demonstrate the functionality of the is* functions, as well as the query_type function.

>>> from fastnumbers import isfloat
>>> # Check that a string can be converted to a float
>>> isfloat('56')
True
>>> isfloat('56.07')
True
>>> isfloat('56.07 lb')
False
>>>
>>> # Check if a given number is a float
>>> isfloat(56.07)
True
>>> isfloat(56)
False
>>>
>>> # Specify if only strings or only numbers are allowed
>>> isfloat(56.07, str_only=True)
False
>>> isfloat('56.07', num_only=True)
False
>>>
>>> # Customize handling for nan or inf
>>> isfloat('nan')
False
>>> isfloat('nan', allow_nan=True)
True

isint works the same as isfloat, but for integers.

>>> from fastnumbers import isint
>>> isint('56')
True
>>> isint(56)
True
>>> isint('56.0')
False
>>> isint(56.0)
False

isreal is very permissive - any float or integer is accepted.

>>> from fastnumbers import isreal
>>> isreal('56.0')
True
>>> isreal('56')
True
>>> isreal(56.0)
True
>>> isreal(56)
True

isintlike checks if a number is “int-like”, if it has no fractional component.

>>> from fastnumbers import isintlike
>>> isintlike('56.0')
True
>>> isintlike('56.7')
False
>>> isintlike(56.0)
True
>>> isintlike(56.7)
False

The query_type function can be used if you need to determine if a value is one of many types, rather than whether or not it is one specific type.

>>> from fastnumbers import query_type
>>> query_type('56.0')
<class 'float'>
>>> query_type('56')
<class 'int'>
>>> query_type(56.0)
<class 'float'>
>>> query_type(56)
<class 'int'>
>>> query_type(56.0, coerce=True)
<class 'int'>
>>> query_type('56.0', allowed_types=(float, int))
<class 'float'>
>>> query_type('hey')
<class 'str'>
>>> query_type('hey', allowed_types=(float, int))  # returns None

Drop-in Replacement Functions

PLEASE do not take it for granted that these functions will provide you with a speedup - they may not. Every platform, compiler, and data-set is different, and you should perform a timing test on your system with your data to evaluate if you will see a benefit. As you can see from the data linked in the Timing section, the amount of speedup you will get is particularly data-dependent.

NOTE: in the below examples, we use from fastnumbers import int instead of import fastnumbers. This is because calling fastnumbers.int() is a bit slower than just int() because Python has to first find fastnumbers in your namespace, then find int in the fastnumbers namespace, instead of just finding int in your namespace - this will slow down the function call and defeat the purpose of using fastnumbers. If you do not want to actually shadow the built-in int function, you can do from fastnumbers import int as fn_int or something like that.

>>> # Use is identical to the built-in functions
>>> from fastnumbers import float, int
>>> float('10')
10.0
>>> int('10')
10
>>> float('bad input') #doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
  ...
ValueError: invalid literal for float(): bad input

real is is provided to give a float or int depending on the fractional component of the input.

>>> from fastnumbers import real
>>> real('56.0')
56
>>> real('56.7')
56.7
>>> real('56.0', coerce=False)
56.0

Timing

Just how much faster is fastnumbers than a pure python implementation? Please see the following Jupyter notebooks for timing information on various Python versions.

High-Level Algorithm

CPython goes to great lengths to ensure that your string input is converted to a number correctly (you can prove this to yourself by examining the source code for integer conversions and for float conversions), but this extra effort is only needed for very large integers or for floats with many digits or large exponents. For integers, if the result could fit into a C long then a naive algorithm of < 10 lines of C code is sufficient. For floats, if the number does not require high precision or does not have a large exponent (such as “-123.45e6”) then a short naive algorithm is also possible.

These naive algorithms are quite fast, but the performance improvement comes at the expense of being unsafe (no protection against overflow or round-off errors). fastnumbers uses a heuristic to determine if the input can be safely converted with the much faster naive algorithm. These heuristics are extremely conservative - if there is any chance that the naive result would not give exactly the same result as the built-in functions then it will fall back on CPython’s conversion function. For this reason, fastnumbers is aways at least as fast as CPython’s built-in float and int functions, and oftentimes is significantly faster because most real-world numbers pass the heuristic.

Installation

Use pip!

$ pip install fastnumbers

How to Run Tests

Please note that fastnumbers is NOT set-up to support python setup.py test.

The recommended way to run tests is with tox. Suppose you want to run tests for Python 3.6 - you can run tests by simply executing the following:

$ tox -e py36

tox will create virtual a virtual environment for your tests and install all the needed testing requirements for you.

If you want to run testing on all of Python 3.5, 3.6, 3.7, and 3.8 you can simply execute

$ tox

If you do not wish to use tox, you can install the testing dependencies with the dev-requirements.txt file and then run the tests manually using pytest.

$ pip install -r dev/requirements.txt
$ pytest

Author

Seth M. Morton

History

Please visit the changelog on GitHub or in the documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastnumbers-3.2.1.tar.gz (100.1 kB view details)

Uploaded Source

Built Distributions

fastnumbers-3.2.1-cp310-cp310-win_amd64.whl (35.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

fastnumbers-3.2.1-cp310-cp310-win32.whl (32.6 kB view details)

Uploaded CPython 3.10 Windows x86

fastnumbers-3.2.1-cp310-cp310-musllinux_1_1_x86_64.whl (82.6 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

fastnumbers-3.2.1-cp310-cp310-musllinux_1_1_i686.whl (78.3 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

fastnumbers-3.2.1-cp310-cp310-musllinux_1_1_aarch64.whl (87.8 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

fastnumbers-3.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (79.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

fastnumbers-3.2.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (87.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

fastnumbers-3.2.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (84.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

fastnumbers-3.2.1-cp310-cp310-macosx_10_9_x86_64.whl (28.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

fastnumbers-3.2.1-cp39-cp39-win_amd64.whl (35.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

fastnumbers-3.2.1-cp39-cp39-win32.whl (32.7 kB view details)

Uploaded CPython 3.9 Windows x86

fastnumbers-3.2.1-cp39-cp39-musllinux_1_1_x86_64.whl (81.1 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

fastnumbers-3.2.1-cp39-cp39-musllinux_1_1_i686.whl (77.1 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

fastnumbers-3.2.1-cp39-cp39-musllinux_1_1_aarch64.whl (86.5 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

fastnumbers-3.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (78.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

fastnumbers-3.2.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (86.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

fastnumbers-3.2.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (83.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

fastnumbers-3.2.1-cp39-cp39-macosx_10_9_x86_64.whl (27.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

fastnumbers-3.2.1-cp38-cp38-win_amd64.whl (35.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

fastnumbers-3.2.1-cp38-cp38-win32.whl (32.6 kB view details)

Uploaded CPython 3.8 Windows x86

fastnumbers-3.2.1-cp38-cp38-musllinux_1_1_x86_64.whl (78.5 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

fastnumbers-3.2.1-cp38-cp38-musllinux_1_1_i686.whl (74.4 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

fastnumbers-3.2.1-cp38-cp38-musllinux_1_1_aarch64.whl (84.0 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

fastnumbers-3.2.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (77.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

fastnumbers-3.2.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (85.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

fastnumbers-3.2.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (82.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

fastnumbers-3.2.1-cp38-cp38-macosx_10_9_x86_64.whl (27.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

fastnumbers-3.2.1-cp37-cp37m-win_amd64.whl (35.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

fastnumbers-3.2.1-cp37-cp37m-win32.whl (32.4 kB view details)

Uploaded CPython 3.7m Windows x86

fastnumbers-3.2.1-cp37-cp37m-musllinux_1_1_x86_64.whl (77.5 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

fastnumbers-3.2.1-cp37-cp37m-musllinux_1_1_i686.whl (74.9 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

fastnumbers-3.2.1-cp37-cp37m-musllinux_1_1_aarch64.whl (82.6 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

fastnumbers-3.2.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (75.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

fastnumbers-3.2.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (82.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

fastnumbers-3.2.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (81.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

fastnumbers-3.2.1-cp37-cp37m-macosx_10_9_x86_64.whl (27.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

fastnumbers-3.2.1-cp36-cp36m-win_amd64.whl (35.6 kB view details)

Uploaded CPython 3.6m Windows x86-64

fastnumbers-3.2.1-cp36-cp36m-win32.whl (32.4 kB view details)

Uploaded CPython 3.6m Windows x86

fastnumbers-3.2.1-cp36-cp36m-musllinux_1_1_x86_64.whl (77.1 kB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

fastnumbers-3.2.1-cp36-cp36m-musllinux_1_1_i686.whl (73.2 kB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

fastnumbers-3.2.1-cp36-cp36m-musllinux_1_1_aarch64.whl (81.6 kB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ARM64

fastnumbers-3.2.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (75.2 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

fastnumbers-3.2.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (84.1 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

fastnumbers-3.2.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (81.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

fastnumbers-3.2.1-cp36-cp36m-macosx_10_9_x86_64.whl (27.7 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file fastnumbers-3.2.1.tar.gz.

File metadata

  • Download URL: fastnumbers-3.2.1.tar.gz
  • Upload date:
  • Size: 100.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for fastnumbers-3.2.1.tar.gz
Algorithm Hash digest
SHA256 44f92b42e7e9f2ed77ba5cb7d664f05c17e43d4586718ed6cd3b3fffa0e67f33
MD5 0e96296753ac2621fc2b83ec409e03ab
BLAKE2b-256 06a2aa83d263e73d58ed6f7117870c70a335c5e32932fb15fb9a525fbf7f547a

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fastnumbers-3.2.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 35.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for fastnumbers-3.2.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ab22ec72a3f3f8bfc37451b6606b1fbd88ef6abe02ffcd6474530f77fb62c648
MD5 17a3cf51faca660d1af189d685f72ad4
BLAKE2b-256 4bdb58ec9a2547e36e70f8ee1af50dcc619a36be5d2c3ff2eb5d6eb7f98e7b51

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: fastnumbers-3.2.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 32.6 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for fastnumbers-3.2.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 aca75b5b1b9fce0eb30b686e05e4343f10bab81c3bec2a032017dba67897116b
MD5 a79d1de35330302648d914b287f5606f
BLAKE2b-256 3ad10ce35645c11ceeb8f9837be025812079bc7bfc289aae4baaff775f214364

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: fastnumbers-3.2.1-cp310-cp310-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 82.6 kB
  • Tags: CPython 3.10, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for fastnumbers-3.2.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3effe1d26ce86d30f86e189156415838ce2a6b67f6cc4719b275a25e3bcb94ee
MD5 5d5e8526af0771e4b5f7b9d672dcfe0e
BLAKE2b-256 d0ff39f32c85542a34a3aa0ace8f4d85834672d25517223cf750b77463732a37

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

  • Download URL: fastnumbers-3.2.1-cp310-cp310-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 78.3 kB
  • Tags: CPython 3.10, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for fastnumbers-3.2.1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a61f6e8d08a4ad70799abfcb510271a850d3154d06e64cba25123ab78e9453fa
MD5 d6752b89a30e1eaaf8e3a18e311945f8
BLAKE2b-256 35a94c1af2bbceccec642176570fb640f1ae720a8ea52805b4a3c31252dea4d0

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

  • Download URL: fastnumbers-3.2.1-cp310-cp310-musllinux_1_1_aarch64.whl
  • Upload date:
  • Size: 87.8 kB
  • Tags: CPython 3.10, musllinux: musl 1.1+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for fastnumbers-3.2.1-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 77f47139ebce4d5129ad463437def248b090cc95ec3d500c6a43e354d0c797ec
MD5 cf04b5e62ca957fbd928ef9c89c81282
BLAKE2b-256 696ef896380c6ebaf2b505e919ca670f8e37248b82576f8af813532c73be02d9

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-3.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d5969f14c413ebacfdf895c2d07f26e1634cf3df6860801a90c3ad0f367ec361
MD5 42c2cc4ea0c2c2d5b2543b3a2d4dfd6e
BLAKE2b-256 5ef623bd0f3e95cd2dd185c1449c6a8b6c52823cb0a1d8fe92867d8d72a9bd6a

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-3.2.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 066a85c4a840b39077b9649f0350a756cfe4a295011708c184a0b604b60ddd8d
MD5 86c7898ce429bbe4fbe47cf5d5dd7766
BLAKE2b-256 3e36fe82a1ea87c5983ca013ea69467e19d04cb9a05b647fa9a547dcf1148bdc

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-3.2.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e25baa22f61be692f8f341f2092695e1bc8cb589f1a3c203887bb2c46e0a82fe
MD5 3c47aeb605dc53e6448338ee7763bac3
BLAKE2b-256 9e5ff58a54ae4821616b701d9ed2e4208331be771880f5336600f37742a66ee0

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: fastnumbers-3.2.1-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 28.0 kB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for fastnumbers-3.2.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cb40fde12bba81a8b8d8d299cafc007b7b9670368bc83910dda65bd6811a84be
MD5 cd21608c5e7ca412b6ae9da54d79189d
BLAKE2b-256 e72ee981b4051ffce9679ee3204852d8fb3911a00a9536e4ca2effb629528e0e

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fastnumbers-3.2.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 35.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for fastnumbers-3.2.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 cfc8259e6ad48539c602a0447c5b64719e5c8ed83d1cc28e8bb6f4067a5c7f61
MD5 46ec9888756cd66e6381953bc6b68294
BLAKE2b-256 aa4c3dce63a551f39fb377b5ec5feccd5347094adc43d3cda7e25451c1aecf87

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: fastnumbers-3.2.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 32.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for fastnumbers-3.2.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 25b15706447c948375e249a0b39e7a1e0d7b3623d93a0ae1d33d159a64ade49d
MD5 245b3425ba9e87fa6a7039422a65a215
BLAKE2b-256 43c7ccd55bdd8305508d1fb78f5099b9b41ca45710b8d96f21a3980d8356aaed

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: fastnumbers-3.2.1-cp39-cp39-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 81.1 kB
  • Tags: CPython 3.9, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for fastnumbers-3.2.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7f29fa1b3cb7d68a8257aa1682a3c45e94de9c12eb36cec6288f9cc8a0854b57
MD5 83e4014e48db6d7b8eea1f75ace02694
BLAKE2b-256 32b0e22b6e719ff23357f4cfbbcc2217a8ba683d7b0467d2d3b650148cc76db2

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

  • Download URL: fastnumbers-3.2.1-cp39-cp39-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 77.1 kB
  • Tags: CPython 3.9, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for fastnumbers-3.2.1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 1119ab529358cafe1404fa7a2038d3ecd57d24c216d425767071a540739e9853
MD5 37159eafb1bee04575891354da55c7fc
BLAKE2b-256 709124caeb4ab110faf4e3effbcd9d444284e5d881d03ac4c3091068a67a0911

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

  • Download URL: fastnumbers-3.2.1-cp39-cp39-musllinux_1_1_aarch64.whl
  • Upload date:
  • Size: 86.5 kB
  • Tags: CPython 3.9, musllinux: musl 1.1+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for fastnumbers-3.2.1-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 8d2af240373e0f9aa66fe549d4613995e98f5c47d965ed96ea40122f9e49abd3
MD5 44b22b399dd5e63a97b73d73c88a7e57
BLAKE2b-256 abfc2a81eae013d0eff462efc0f848f82fbf9192540fa9833a4f874d236a5c26

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-3.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2b929456a9ea508e33fab4c9bfaf086f8fc5a647c63521da042168e4e9156a8e
MD5 f26a7c2542df7716c4e58507e58ec242
BLAKE2b-256 3d6b597a01a83820d9138f4de8c330cb16b4bbd18efe97e48f8e29273882b84e

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-3.2.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b19c8ff541d7329f9f81d5d328ae22660198de4b590b5cca1745e81502872046
MD5 cbb4944bcbcc6338c2a04351b732f21e
BLAKE2b-256 370bbe0f3549299e2bd219c4b9c2a4e0fe3e248a9428d99fba4bb8fa98684d8e

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-3.2.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 770c8b76ae600b9bdfb20e3a2404903aeeb36add3f5f53766040b412aba49c9d
MD5 47e6bf22dff4b2f585703a1c3f8ae2a3
BLAKE2b-256 3595fdb5566d60dda9fbc04880b5fe49ab8e2f1811ae58c1e5fd90ebd331884f

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: fastnumbers-3.2.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 27.9 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for fastnumbers-3.2.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d316e26c5fea9eef90bacf28015c52056b12977a23252051b00a9f7c9ee11445
MD5 5a4518499fd9cd2d0cd8e273eda553e7
BLAKE2b-256 94c4ba5d66641bd965fb2f9027e434bde0cf5824790e72f3936cee310cf604e1

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: fastnumbers-3.2.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 35.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for fastnumbers-3.2.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 41a3b19f254bf3db8cbe4e2231ef8f54e3dc8c9ac9bac918ca58546509a34e5d
MD5 3659e1f774d3cda22142ad36e50a047f
BLAKE2b-256 16350b794d47519db4d47467a5eb5b074488bfa7093b68fa1969a53cb396e625

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: fastnumbers-3.2.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 32.6 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for fastnumbers-3.2.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 b850b25e5fe95c41e9899040a412b922d8bfc2225e599eebce7059880e31a806
MD5 197c8d6e9f3c5b11927c28ea2271ffd7
BLAKE2b-256 cde94c9b65d57bb5abd2aa508e596923a3be084dfcc479c8f7f36db27171c1dd

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: fastnumbers-3.2.1-cp38-cp38-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 78.5 kB
  • Tags: CPython 3.8, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for fastnumbers-3.2.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 62d69ea4b6d49e2194dfde3011b5ac044e446ff24bbeb384e3420b276d47afe2
MD5 9f01c57e511266c4307920c8fee536ea
BLAKE2b-256 f1514da18c8e9ac68250fa0db85bbbdd48a4da3f7b823290806be9177fe4c8b1

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

  • Download URL: fastnumbers-3.2.1-cp38-cp38-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 74.4 kB
  • Tags: CPython 3.8, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for fastnumbers-3.2.1-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 01a5f90bda9cf894e1bb5941f9c9bdbe9ef1f27cc43b8cefda2b10417c32c565
MD5 a0b8db2095d43921dd526a13afcbe68f
BLAKE2b-256 843773468a1826470da58a7062da42d3dbe0e82f4c914879d4d66113567fbee6

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

  • Download URL: fastnumbers-3.2.1-cp38-cp38-musllinux_1_1_aarch64.whl
  • Upload date:
  • Size: 84.0 kB
  • Tags: CPython 3.8, musllinux: musl 1.1+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for fastnumbers-3.2.1-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 4cbf6ce382fb2c75ab087d0ac8b814a1c7b441392a3b3db76b12787dd9cf856a
MD5 c2123d4949b8b92b90fe3e3c43697f39
BLAKE2b-256 0fa26dc5d83d38bf12611c33aec013ab338e7dfc8da2dd74ea143ce148e20bf9

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-3.2.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fbd5bedc5b122a251706b77d75c9d853be1917cf2f790aac222ffa0e260258a7
MD5 3d5f93a3276a2c18ea4a641cd81347bd
BLAKE2b-256 8910aa794aadadaa106dd50d03a84368e6372151d001a679cbcf56515d98a4ee

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-3.2.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 713056cc8c29077e0e2c0fb571844fba3e25a9463690196266cdb82e543ebe1e
MD5 22f6924590cbb65da3bc65e9b200cc22
BLAKE2b-256 3ba9945d4fdd2f8f0c3a124f33329d056f75642fafe90c27cf912a76725385d3

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-3.2.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 17424d2bfd2aad8c559047a6f0807a1e3360bfe28ac335132ab07a86170aced4
MD5 74c64dc73b4849e44d5de06d24fdf810
BLAKE2b-256 eeb8df66373351617592ef424f2b7bce9e6e29d7f8f9548a6c823fda8d05d3f0

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: fastnumbers-3.2.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 27.9 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for fastnumbers-3.2.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a93475fd08e13e1b66d6de400a74d0fc0c805221feb166321712a5a4395e7e70
MD5 e87a72ef3bc08fdc6e19030d6c63b025
BLAKE2b-256 616f1cde27fc34481465cec0523b82752e5a31ed50c518f6cb5d87645b71bb62

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: fastnumbers-3.2.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 35.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for fastnumbers-3.2.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 857ca1f1a25e9a4e3137739ef7dd8926707b4a1e54e936dda1fce551f7189541
MD5 cf251efaa71982c370a0d5eef4e7278d
BLAKE2b-256 5293812bb783c1a0ea5b8420f242fe97907cff115d4ce49d1c4634e1d079238e

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: fastnumbers-3.2.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 32.4 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for fastnumbers-3.2.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 68ba3d6461667e8b3371ea419cf82f015be8e81a2c5b3f809b23dd2eb74018de
MD5 c996e1bb0458b4efddb8d2cf7f159722
BLAKE2b-256 23ca4cd88c61f03816f8c7fabb821b0aad60903230cfd9c941d8191914f8e0e0

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: fastnumbers-3.2.1-cp37-cp37m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 77.5 kB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for fastnumbers-3.2.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 452b37f9ea46e92f2057d1f833a9bb091a834293a6d441ae7133134a3bb7a066
MD5 2a4b07f7fe1e44c2914b2ee5e3b0e697
BLAKE2b-256 ff8e6187f6e9383bf3ea9bcffe61a0598b4e8202d45269d9d9037e05b41a07f2

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

  • Download URL: fastnumbers-3.2.1-cp37-cp37m-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 74.9 kB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for fastnumbers-3.2.1-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0ab8a4cf0fad13e6c55c35c6c335ca3b85c65a2acd0ed09e0f874ddb20ba9f51
MD5 8b3b28eaf78dd2f17fdb122f0f999bc3
BLAKE2b-256 5719fac7b5660168f68e9386221d04e0918aab47608830077b14d2659f76db83

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

  • Download URL: fastnumbers-3.2.1-cp37-cp37m-musllinux_1_1_aarch64.whl
  • Upload date:
  • Size: 82.6 kB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for fastnumbers-3.2.1-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 2fb63a4fed849e78811121583198fe253a2cfc00255ed7e6b9ab8fe3f9851673
MD5 f35ad21050b7979f6f8d176e35518eac
BLAKE2b-256 29f466ff518adb2c7376986213ad6db077d27bd2c7d380b7a2f61f1b00fdcbf6

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-3.2.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6d5363dbc1513fa9c6b33a579a70c26774632b61cc1207cd9e48e5b6c03b7cc7
MD5 a0cedfab5ae8d8b10d42893dd0d89520
BLAKE2b-256 4fe242ed73fc79f646331bdd842bdc0036a409e3d75d4305eaaf85a1cb63f4ae

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-3.2.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0a0af8e54396b3b470dc1803ebe3d7020ab74b4e2892a48d1173900d9131aabb
MD5 f7fb0f358f6c03dd791795274e54c5ab
BLAKE2b-256 5b73fbbab20b26d5683ad986a8ecbc69d178297994dc3818223dbf8ebdcec901

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-3.2.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 aa8c34f0a60aaf705bf3e797344352ddcd35c5f96973bfa5f2caa8fb55c91474
MD5 a7bee161d71d68677b1999ac2107a349
BLAKE2b-256 1853dda825045be3837dd3981e614bb90eadb668128b5bd121b00e5a85ab7268

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: fastnumbers-3.2.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 27.7 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for fastnumbers-3.2.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9fde693cb51b766b40cb7d0bef00c6354ec0aa395304dbe099d420bfcb452513
MD5 9a247b0315825fa665d95006a3affb95
BLAKE2b-256 0e73eba9e2ae36a617329d76d0712de393983b0b99daa3e67da51c34f73094cd

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: fastnumbers-3.2.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 35.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for fastnumbers-3.2.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 b1345e67a764c1cdcd9de6f07514b1935e6a2d40990e8e720c273c492052ba0c
MD5 e7a30b6febaaf37cf6e5941c9c3e62dd
BLAKE2b-256 db2d26ad2197c68d4c4f75ff6cfb6445c652d05b87bb8de2d535053e7593485b

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: fastnumbers-3.2.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 32.4 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for fastnumbers-3.2.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 9f3c7c5560486cce3f918dc434adc8fc64580678984fe4c650a28c512b2e22b0
MD5 fc73c66150ad15686d28e43f80bc8fec
BLAKE2b-256 921e4cf53fc462d794179dabc780f83220ac1a61bd813cc7feef770029678f70

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: fastnumbers-3.2.1-cp36-cp36m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 77.1 kB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for fastnumbers-3.2.1-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e182d523b744f53196c3a93b09a062d8a1ed3f2872c51b3b3bccd5172cca34d3
MD5 350f58a1edd29c2fb672bfa0b3178976
BLAKE2b-256 1c772ec4f3511488672d3f1d3f0dcca21eba1f8ec3945976b0650a9f4d55301d

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

  • Download URL: fastnumbers-3.2.1-cp36-cp36m-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 73.2 kB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for fastnumbers-3.2.1-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0ba492b12ac72c3bbfe80183b64c40c394e84b3830272dc76a14324c1c889af6
MD5 7d8639109e4edcfd036599f3a7d977b8
BLAKE2b-256 f950a4df0ba6335f18284872c5abf0f876a6ffa4e71e04c3e28b75200b29b2b0

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp36-cp36m-musllinux_1_1_aarch64.whl.

File metadata

  • Download URL: fastnumbers-3.2.1-cp36-cp36m-musllinux_1_1_aarch64.whl
  • Upload date:
  • Size: 81.6 kB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for fastnumbers-3.2.1-cp36-cp36m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e88fd6884c86076a53476e7647d3d836216617088adf0ae9cc528b8bd3e010c5
MD5 5f43ec78913e1d8668e40c71c639c54d
BLAKE2b-256 77f33a6f8f4aadfa7fb701f9d3b6edcc53be2d2422e3dcfb72f0d482d6f04a96

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-3.2.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 96724556c65e59a58e9e88bdba63331600e2481ecfe75c5185969650645f6410
MD5 784d2f4c68b3302b10a00c96858ef229
BLAKE2b-256 98f6f92b865ff55c1bc719ca45c3c7c0e6f1172bd85ff5f8811c0b456a69bf61

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-3.2.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2e67762a9b2d8b5ba8ef3313b92f57cb5800d11869379bba5b090f5799475149
MD5 9a62a02ee87787cde6cb7cc13dc08053
BLAKE2b-256 30be72410eed564da256e5af801329f7cc52d20bdcf03638028b28f0521894d7

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-3.2.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 2027f683ccab4f4d6b76eb085e8f75d04099c5379ddee0f57576b0b3a49714b1
MD5 04caa8457bad78159a87569f020a36eb
BLAKE2b-256 bfe246ea92c1665165255f926c3a6ce4acab05069309d13912d3abdc55359f47

See more details on using hashes here.

File details

Details for the file fastnumbers-3.2.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: fastnumbers-3.2.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 27.7 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for fastnumbers-3.2.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 40e2bba55f30c5a90ee67db35d89ddc5ccb11abd0fa7331be5bbe0e0c06254e0
MD5 2ff39944653f5a38d30272ffdd439524
BLAKE2b-256 d2b88786f60c980995fe7d05f9990f59bac6eb9380896aceb9630aec857ba0ad

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page