Skip to main content

Super-fast and clean conversions to numbers.

Project description

https://img.shields.io/pypi/v/fastnumbers.svg https://img.shields.io/pypi/pyversions/fastnumbers.svg https://img.shields.io/pypi/l/fastnumbers.svg https://github.com/SethMMorton/fastnumbers/workflows/Tests/badge.svg https://codecov.io/gh/SethMMorton/fastnumbers/branch/main/graph/badge.svg

Super-fast and clean conversions to numbers.

fastnumbers is a module with the following three objectives (in order of decreasing importance as to why the module was created):

  1. Provide a set of convenience functions that wrap calls to int and float and provides easy, concise, powerful, fast and flexible error handling.

  2. Provide a set of functions that can be used to rapidly identify if an input could be converted to int or float.

  3. Provide drop-in replacements for the Python built-in int and float that are on par or faster with the Python equivalents (see the Timing_ section for details). These functions should behave identically to the Python built-ins except for a few specific corner-cases as mentioned in the API documentation for those functions.

    • PLEASE read the quick start for these functions to fully understand the caveats before using them.

NOTICE: As of fastnumbers version 4.0.0, only Python >= 3.7 is supported.

NOTICE: As of fastnumbers version 4.0.0, the functions fast_real, fast_float, fast_int, fast_forceint, isreal, isfloat, isint, and isintlike have been deprecated and are replaced with try_real, try_float, try_int, try_forceint, check_real, check_float, check_int, and check_intlike, respectively. These new functions have more flexible APIs and have names that better reflect the intent of the functions. The old functions can still be used (they will never be removed from fastnumbers), but the new ones should be preferred for new development.

NOTICE: As of fastnumbers version 4.0.0, query_type now sets allow_underscores to False by default instead of True.

Quick Start

There are three broad categories of functions exposed by fastnumbers. The below quick start will demonstrate each of these categories. The quick start is “by example”, and will show a sample interactive session using the fastnumbers API.

Error-Handling Functions

try_float will be used to demonstrate the functionality of the try_* functions.

>>> from fastnumbers import RAISE, try_float
>>> # Convert string to a float
>>> try_float('56.07')
56.07
>>> # Integers are converted to floats
>>> try_float(54)
54.0
>>>
>>> # Unconvertable string returned as-is by default
>>> try_float('bad input')
'bad input'
>>> # Unconvertable strings can trigger a default value
>>> try_float('bad input', on_fail=0)
0
>>>
>>> # One can ask inf or nan to be substituted with another value
>>> try_float('nan')
nan
>>> try_float('nan', nan=0.0)
0.0
>>> try_float(float('nan'), nan=0.0)
0.0
>>> try_float('56.07', nan=0.0)
56.07
>>>
>>> # The default built-in float behavior can be triggered with
>>> # RAISE given to "on_fail".
>>> try_float('bad input', on_fail=RAISE) #doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
  ...
ValueError: invalid literal for float(): bad input
>>>
>>> # A function can be used to return an alternate value for invalid input
>>> try_float('bad input', on_fail=len)
9
>>> try_float(54, on_fail=len)
54.0
>>>
>>> # Single unicode characters can be converted.
>>> try_float('\u2164')  # Roman numeral 5 (V)
5.0
>>> try_float('\u2466')  # 7 enclosed in a circle
7.0

try_int behaves the same as try_float, but for integers.

>>> from fastnumbers import try_int
>>> try_int('1234')
1234
>>> try_int('\u2466')
7

try_real is like try_float or try_int depending on if there is any fractional component of thi return value.

>>> from fastnumbers import try_real
>>> try_real('56')
56
>>> try_real('56.0')
56
>>> try_real('56.0', coerce=False)
56.0
>>> try_real('56.07')
56.07
>>> try_real(56.07)
56.07
>>> try_real(56.0)
56
>>> try_real(56.0, coerce=False)
56.0

try_forceint always returns an integer.

>>> from fastnumbers import try_forceint
>>> try_forceint('56')
56
>>> try_forceint('56.0')
56
>>> try_forceint('56.07')
56
>>> try_forceint(56.07)
56

About the on_fail option

The on_fail option is a way for you to do anything in the event that the given input cannot be converted to a number. It can

  • return given object as-is if set to fastnumbers.INPUT (this is the default)

  • raise a ValueError if set to fastnumbers.RAISE

  • return a default value if given any non-callable object

  • call a function with the given object if given a single-argument callable

Below are a couple of ideas to get you thinking.

NOTE:: There is also an on_type_error option that behaves the same as on_fail except that a) it is triggered when the given object is of an invalid type and b) the default value is fastnumbers.RAISE, not fastnumbers.INPUT.

>>> from fastnumbers import INPUT, RAISE, try_float
>>> # You want to convert strings that can be converted to numbers, but
>>> # leave the rest as strings. Use fastnumbers.INPUT (the default)
>>> try_float('45.6')
45.6
>>> try_float('invalid input')
'invalid input'
>>> try_float('invalid input', on_fail=INPUT)
'invalid input'
>>>
>>>
>>>
>>> # You want to convert any invalid string to NaN
>>> try_float('45.6', on_fail=float('nan'))
45.6
>>> try_float('invalid input', on_fail=float('nan'))
nan
>>>
>>>
>>>
>>> # Simple callable case, send the input through some function to generate a number.
>>> try_float('invalid input', on_fail=lambda x: float(x.count('i')))  # count the 'i's
3.0
>>>
>>>
>>>
>>> # Suppose we know that our input could either be a number, or if not
>>> # then we know we just have to strip off parens to get to the number
>>> # e.g. the input could be '45' or '(45)'. Also, suppose that if it
>>> # still cannot be converted to a number we want to raise an exception.
>>> def strip_parens_and_try_again(x):
...     return try_float(x.strip('()'), on_fail=RAISE)
...
>>> try_float('45', on_fail=strip_parens_and_try_again)
45.0
>>> try_float('(45)', on_fail=strip_parens_and_try_again)
45.0
>>> try_float('invalid input', on_fail=strip_parens_and_try_again) #doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
  ...
ValueError: invalid literal for float(): invalid input
>>>
>>>
>>>
>>> # Suppose that whenever an invalid input is given, it needs to be
>>> # logged and then a default value is returned.
>>> def log_and_default(x, log_method=print, default=0.0):
...     log_method("The input {!r} is not valid!".format(x))
...     return default
...
>>> try_float('45', on_fail=log_and_default)
45.0
>>> try_float('invalid input', on_fail=log_and_default)
The input 'invalid input' is not valid!
0.0
>>> try_float('invalid input', on_fail=lambda x: log_and_default(x, default=float('nan')))
The input 'invalid input' is not valid!
nan

Checking Functions

check_float will be used to demonstrate the functionality of the check_* functions, as well as the query_type function.

>>> from fastnumbers import check_float
>>> from fastnumbers import ALLOWED, DISALLOWED, NUMBER_ONLY, STRING_ONLY
>>> # Check that a string can be converted to a float
>>> check_float('56')
True
>>> check_float('56', strict=True)
False
>>> check_float('56.07')
True
>>> check_float('56.07 lb')
False
>>>
>>> # Check if a given number is a float
>>> check_float(56.07)
True
>>> check_float(56)
False
>>>
>>> # Specify if only strings or only numbers are allowed
>>> check_float(56.07, consider=STRING_ONLY)
False
>>> check_float('56.07', consider=NUMBER_ONLY)
False
>>>
>>> # Customize handling for nan or inf (see API for more details)
>>> check_float('nan')
False
>>> check_float('nan', nan=ALLOWED)
True
>>> check_float(float('nan'))
True
>>> check_float(float('nan'), nan=DISALLOWED)
False

check_int works the same as check_float, but for integers.

>>> from fastnumbers import check_int
>>> check_int('56')
True
>>> check_int(56)
True
>>> check_int('56.0')
False
>>> check_int(56.0)
False

check_real is very permissive - any float or integer is accepted.

>>> from fastnumbers import check_real
>>> check_real('56.0')
True
>>> check_real('56')
True
>>> check_real(56.0)
True
>>> check_real(56)
True

check_intlike checks if a number is “int-like”, if it has no fractional component.

>>> from fastnumbers import check_intlike
>>> check_intlike('56.0')
True
>>> check_intlike('56.7')
False
>>> check_intlike(56.0)
True
>>> check_intlike(56.7)
False

The query_type function can be used if you need to determine if a value is one of many types, rather than whether or not it is one specific type.

>>> from fastnumbers import query_type
>>> query_type('56.0')
<class 'float'>
>>> query_type('56')
<class 'int'>
>>> query_type(56.0)
<class 'float'>
>>> query_type(56)
<class 'int'>
>>> query_type(56.0, coerce=True)
<class 'int'>
>>> query_type('56.0', allowed_types=(float, int))
<class 'float'>
>>> query_type('hey')
<class 'str'>
>>> query_type('hey', allowed_types=(float, int))  # returns None

Drop-in Replacement Functions

PLEASE do not take it for granted that these functions will provide you with a speedup - they may not. Every platform, compiler, and data-set is different, and you should perform a timing test on your system with your data to evaluate if you will see a benefit. As you can see from the data linked in the Timing section, the amount of speedup you will get is particularly data-dependent. In general you will see a performance boost for floats (and this boost increases as the size of the float increases), but for integers it is largely dependent on the length of the integer. You will likely not see a performance boost if the input are already numbers instead of strings.

NOTE: in the below examples, we use from fastnumbers import int instead of import fastnumbers. This is because calling fastnumbers.int() is a bit slower than just int() because Python has to first find fastnumbers in your namespace, then find int in the fastnumbers namespace, instead of just finding int in your namespace - this will slow down the function call and defeat the purpose of using fastnumbers. If you do not want to actually shadow the built-in int function, you can do from fastnumbers import int as fn_int or something like that.

>>> # Use is identical to the built-in functions
>>> from fastnumbers import float, int
>>> float('10')
10.0
>>> int('10')
10
>>> float('bad input') #doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
  ...
ValueError: invalid literal for float(): bad input

real is provided to give a float or int depending on the fractional component of the input.

>>> from fastnumbers import real
>>> real('56.0')
56
>>> real('56.7')
56.7
>>> real('56.0', coerce=False)
56.0

Timing

Just how much faster is fastnumbers than a pure python implementation? Please look https://github.com/SethMMorton/fastnumbers/tree/main/profiling.

High-Level Algorithm

For integers, CPython goes to great lengths to ensure that your string input is converted to a number correctly and losslessly (you can prove this to yourself by examining the source code for integer conversions). This extra effort is only needed for integers that cannot fit into a 64-bit integer data type - for those that can, a naive algorithm of < 10 lines of C code is sufficient and significantly faster. fastnumbers uses a heuristic to determine if the input can be safely converted with the much faster naive algorithm, and if so it does so, falling back on the CPython implementation for longer input strings. Most real-world numbers pass the heuristic and so you should generally see improved performance with fastnumbers for integers.

For floats, fastnumbers utilizes the ultra-fast fast_float::from_chars function to convert strings representing floats into a C double both quickly and safely - the conversion provides the same accuracy as the CPython float conversion function but instead of scaling linearly with length of the input string it seems to have roughly constant performance. By completely bypassing the CPython converter we get significant performance gains with no penalty, so you should always see improved performance with fastnumbers for floats.

Installation

Use pip!

$ pip install fastnumbers

How to Run Tests

Please note that fastnumbers is NOT set-up to support python setup.py test.

The recommended way to run tests is with tox. Suppose you want to run tests for Python 3.8 - you can run tests by simply executing the following:

$ tox -e py38

tox will create virtual a virtual environment for your tests and install all the needed testing requirements for you.

If you want to run testing on all supported Python versions you can simply execute

$ tox

If you do not wish to use tox, you can install the testing dependencies with the dev-requirements.txt file and then run the tests manually using pytest.

$ pip install -r dev/requirements.txt
$ pytest

Author

Seth M. Morton

History

Please visit the changelog on GitHub or in the documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastnumbers-4.0.0.tar.gz (148.9 kB view details)

Uploaded Source

Built Distributions

fastnumbers-4.0.0-cp311-cp311-win_amd64.whl (59.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

fastnumbers-4.0.0-cp311-cp311-win32.whl (57.8 kB view details)

Uploaded CPython 3.11 Windows x86

fastnumbers-4.0.0-cp311-cp311-musllinux_1_1_x86_64.whl (960.4 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

fastnumbers-4.0.0-cp311-cp311-musllinux_1_1_i686.whl (1.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

fastnumbers-4.0.0-cp311-cp311-musllinux_1_1_aarch64.whl (947.5 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

fastnumbers-4.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (345.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fastnumbers-4.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (344.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

fastnumbers-4.0.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (350.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fastnumbers-4.0.0-cp311-cp311-macosx_11_0_arm64.whl (62.8 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fastnumbers-4.0.0-cp311-cp311-macosx_10_9_x86_64.whl (64.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

fastnumbers-4.0.0-cp311-cp311-macosx_10_9_universal2.whl (116.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

fastnumbers-4.0.0-cp310-cp310-win_amd64.whl (59.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

fastnumbers-4.0.0-cp310-cp310-win32.whl (57.8 kB view details)

Uploaded CPython 3.10 Windows x86

fastnumbers-4.0.0-cp310-cp310-musllinux_1_1_x86_64.whl (954.4 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

fastnumbers-4.0.0-cp310-cp310-musllinux_1_1_i686.whl (1.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

fastnumbers-4.0.0-cp310-cp310-musllinux_1_1_aarch64.whl (942.1 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

fastnumbers-4.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (342.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fastnumbers-4.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (341.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

fastnumbers-4.0.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (346.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fastnumbers-4.0.0-cp310-cp310-macosx_11_0_arm64.whl (62.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fastnumbers-4.0.0-cp310-cp310-macosx_10_9_x86_64.whl (64.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

fastnumbers-4.0.0-cp310-cp310-macosx_10_9_universal2.whl (116.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

fastnumbers-4.0.0-cp39-cp39-win_amd64.whl (59.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

fastnumbers-4.0.0-cp39-cp39-win32.whl (57.8 kB view details)

Uploaded CPython 3.9 Windows x86

fastnumbers-4.0.0-cp39-cp39-musllinux_1_1_x86_64.whl (953.5 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

fastnumbers-4.0.0-cp39-cp39-musllinux_1_1_i686.whl (1.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

fastnumbers-4.0.0-cp39-cp39-musllinux_1_1_aarch64.whl (941.1 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

fastnumbers-4.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (341.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fastnumbers-4.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (340.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

fastnumbers-4.0.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (345.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fastnumbers-4.0.0-cp39-cp39-macosx_11_0_arm64.whl (62.7 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fastnumbers-4.0.0-cp39-cp39-macosx_10_9_x86_64.whl (64.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

fastnumbers-4.0.0-cp39-cp39-macosx_10_9_universal2.whl (116.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

fastnumbers-4.0.0-cp38-cp38-win_amd64.whl (59.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

fastnumbers-4.0.0-cp38-cp38-win32.whl (58.0 kB view details)

Uploaded CPython 3.8 Windows x86

fastnumbers-4.0.0-cp38-cp38-musllinux_1_1_x86_64.whl (954.4 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

fastnumbers-4.0.0-cp38-cp38-musllinux_1_1_i686.whl (1.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

fastnumbers-4.0.0-cp38-cp38-musllinux_1_1_aarch64.whl (942.6 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

fastnumbers-4.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (337.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

fastnumbers-4.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (335.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

fastnumbers-4.0.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (345.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fastnumbers-4.0.0-cp38-cp38-macosx_11_0_arm64.whl (62.8 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

fastnumbers-4.0.0-cp38-cp38-macosx_10_9_x86_64.whl (64.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

fastnumbers-4.0.0-cp38-cp38-macosx_10_9_universal2.whl (116.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

fastnumbers-4.0.0-cp37-cp37m-win_amd64.whl (59.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

fastnumbers-4.0.0-cp37-cp37m-win32.whl (57.8 kB view details)

Uploaded CPython 3.7m Windows x86

fastnumbers-4.0.0-cp37-cp37m-musllinux_1_1_x86_64.whl (949.4 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

fastnumbers-4.0.0-cp37-cp37m-musllinux_1_1_i686.whl (1.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

fastnumbers-4.0.0-cp37-cp37m-musllinux_1_1_aarch64.whl (936.6 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

fastnumbers-4.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (336.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

fastnumbers-4.0.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (332.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

fastnumbers-4.0.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (344.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fastnumbers-4.0.0-cp37-cp37m-macosx_10_9_x86_64.whl (64.0 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file fastnumbers-4.0.0.tar.gz.

File metadata

  • Download URL: fastnumbers-4.0.0.tar.gz
  • Upload date:
  • Size: 148.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for fastnumbers-4.0.0.tar.gz
Algorithm Hash digest
SHA256 441110cb99741efc90141cc8d83b51c6fa77849525653f9e0c601fc1876283b4
MD5 6d7e3062e5d9363518f7ac777426271e
BLAKE2b-256 471479647a907519b846cd8ebf913271d3f972562d492056557a7a12625a9707

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d72007ce76da532ba17a7623e58b5e2acd50676470d9f0242391356aec7787de
MD5 b1807314e5e13f477960697d697f86b5
BLAKE2b-256 60b7838b992bdd0b2b858441eeda65c2e588685702f44d6e11f87b47f21660c1

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: fastnumbers-4.0.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 57.8 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for fastnumbers-4.0.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 cb6ee28005f75ce13c20b42bbd1ac2009ff9f921cd5e933d52776b10d9c1e7a2
MD5 89c7c47b1388935b32fae252dc41a28a
BLAKE2b-256 6e189dcd49332ea79bcb70d836bbc902b1d1fade295f31b3c4ba17e2beed2225

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5890e53845f01a07e52291e2b06bf919004fe1d09cf4fbce26987e2ce398efc6
MD5 09ea60f3edba9799b316eb27a8de6427
BLAKE2b-256 fa2c6ecb9d11c18ff5de8e36edd1cc7402b82f0f7c4bda1b8c514c1e91af6210

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 43f5b7e81be5af8d00ec7ed49576fd68c68c4a77e2ff068e290d0c5023201bf1
MD5 5f7f07b46fb12840b1f12efd7949a098
BLAKE2b-256 e65e93922c4ec12ecb9d0df0760450835958507cc25694dccf065d20bc10da0c

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 bd6440f65119028405188e67c153242a69748bbfc5458a1ffd40d6df5901844f
MD5 008f9df12de23bfdcb1a3c27204cb225
BLAKE2b-256 fe04ddae4a51980f3aff7a137e7fa4cd16963c44ff2c1b0607ebbffbec309bee

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 979b30823dd0a3c193a379497ffa553283a46085894d5cb56c6e324a8be54f80
MD5 01d9524bccc2fd1db1aadca5b235ff13
BLAKE2b-256 8008e5e604b332c42cbfd7f771bd04b06c6c6b0ab0c235a2ea3adadd39097a18

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a520ceb65422adf6f18678fc0c5744882ddf3395b3c0b98c5016a4787a60778d
MD5 12db8167961051cfb08148a1089b1183
BLAKE2b-256 eb78d7642cf3ba7bcb55354fd05f79f125a5e633c849ceaf910dc0201c2c93df

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3b0b4bc6593e6f76e868f3bd911c647f3f87b606ddd696852f57faddf06a1965
MD5 601f632c38cbeabca324479c2006b5fd
BLAKE2b-256 d50ac99d2bdcf04397e6575baca7c673a9cd27a23b1776a3904d84fa072ac5a4

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dae51708755d1d7053ce4c025e9810a61e6a35ab0e3764476627c4efd8499d3d
MD5 319a106346114c43101bf101a662e254
BLAKE2b-256 1056e498eb28443e91b74d71b4895801c5705a9a705df5554e7093ceb3c9d9f5

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b82ea73c3b2f52ba4683cbb9c14657ad46aef14de002c48c67d877d4e5a985a3
MD5 f075a7c402921929582631d6c9994654
BLAKE2b-256 062bdddc75503d02b59109a5a5578739988b81e2b51496240a08f16c22741ca4

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 63c70c077dbb6809b3c61d7ed5ce7491e7414f99937af36c5dcca0b5137af1f9
MD5 2910d85270dd03267eaea44689786ed7
BLAKE2b-256 c0c562537c3f593675032711da3a456dba5f9ccd8ed41dff01bfd544ad154fd4

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e6aa5d2e117a4b966b26f7c88df7d27b4c5a1fa9d9ac3014e4c80caef624f01f
MD5 4a954044c877ed29163d5a0d77e3b8bf
BLAKE2b-256 f679284ed031d783671ef44adb8186bd152b850fa451378c27c09359eede6f23

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: fastnumbers-4.0.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 57.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for fastnumbers-4.0.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 197253ced6012d20f3fd134e495b5e5a32cd59cf69855140fb31c11976a7ff4f
MD5 60b209d141881e9212e2eb28a48d1190
BLAKE2b-256 55620ed09698aff5002b1abc4f084fbd31fcd30aa4d5f13ec217f5a6bb8fbc96

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cceebe11b72931aaa33fa7d2c66f40fbe18f53d8cb9b35328c0202b59270eb40
MD5 8e115f974d9e034a3e81aef5f87cbfd9
BLAKE2b-256 fe2c2dd3dac0f014f06678be29e28ff40c2d56f9d16c4f21cbdef48f58f2dce9

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2148732d09711573ea1b79b8d31a79b362b31cad4b20db602bb46d9bf8be1bb0
MD5 0a486aa1c57788e255782d556f165652
BLAKE2b-256 7fda30ab80593b5e1d5e290e4d7fe042820b0d0040427aaa8347c715fccde262

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 4fc21d9e0cc63f7ac93ab025a3177256163f949a302cd8e5e05664c8db843f22
MD5 7287b49ea65b3347d581c4ecbbfa69db
BLAKE2b-256 fb47d66030f758379d1a7515e78cf8a10030958485fa11e67b4dc86550b71fb5

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 024f8fb611117bf79b879acbbad373aff101fe4d621c0690dc0aef019cb44c35
MD5 f54f4324a66d27cae736e6e73746a92f
BLAKE2b-256 ece77444cdc2eef2e7918c0937eab5b4aa9b33fdecedd34eabe1e0e58aee9ffd

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b10ac6e838d303f513b215c3dbdf3c79393874edf10e466890553eb43d51bc23
MD5 b3ed77ab3853ef47d3243adb9111e287
BLAKE2b-256 d5fdee5b7040e81f02f231322fc50cdcc39a8bce8f3efe849b680b44912c4b57

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4fd0ae291afbeffb287a14e65ab14076a59e3273abb3f63e4d46ec2848ef2162
MD5 e497bcacd23c0d6de1e32b170a275873
BLAKE2b-256 5030759fb86207e9e9bd92b8c745c9d5ee47a5959c38631b4cc8a2fff586faf6

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b644d466afbdef6b99d12f10c0ddc0238dd8cb3a80265d4eafee6ecc6c3a898b
MD5 845c852e3fdc1f3433b9a708e91816a2
BLAKE2b-256 4e1039d442bcda2c89f7fc4e3514f7f3ee32dc67828d8a23c10a86d24541238c

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cb9fd4df7234aaa03f250d279b8d132400976b9fe3c79216d7fa26c7bef30095
MD5 436fc78b43ac8c7c2338fe280822588d
BLAKE2b-256 67b3174e251d280e70ed448d96d6d36eafaf1f3a75950de8b32eb7f8dbed5c2c

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a82e40d7b5f5dbf300bd669b6abd8e901977f1caf6dbbac4687a3039213cbdd4
MD5 bf0eb008c1e1f009b4fedc3ee2702c81
BLAKE2b-256 63022d107f7d19233cb717c4209b84ea3ba64e49f8a52b43fbfd92c4e2af8080

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 10732ed2100f082f4fdb088094b5157c4f30c9ddaba5c750309ccb26e6c69780
MD5 bc0e4fe898bd6263950d4196c0f2bd31
BLAKE2b-256 522e8c1057451899f5c4fa2b1b7e4f7e360d7f9482b280ca2fb79bdefd28752e

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: fastnumbers-4.0.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 57.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for fastnumbers-4.0.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 5b87d72c4a52ab52d6020c833d26a7e064c921f81ccbcbf72c6652feae9cb472
MD5 d5386069d7a0911f5d930b75b377bc30
BLAKE2b-256 04e812d47eb6fbd91e7d5a38195088058a178215c398eae21db5b47fbc17999e

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8fc746d7a234638b9cdb386dfc182307b708ce009fc5bb13a257d1b770eb33b0
MD5 529e05c64bb1a7a2228430e207223449
BLAKE2b-256 7aa9c21febf4cce26d2d80a60b2358c7057f040df75f92bd3596691cd324ae54

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 888b67b8d0f480312588ef93dbb2e17bb4a7b8484661976eec25552859af93b6
MD5 4dc6dd741758718f2ec3b050e2ffb16c
BLAKE2b-256 f332c3baacc84ec1f5c110da01ea2c1e7105a8eabe40740e6cc02ea9b2050c3a

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 48c7cbff14ea836984ce8aa1526661e1e0ed5d1426a0346f4ebf63f25c2d7705
MD5 c2eb5a8f9382f7677f1bd342e1b69852
BLAKE2b-256 c27797d5451ec98b4e707a08b564e62ae50c838027784124be3336d574d4084b

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7f5b29042849715605701ca404c099e8b9dec61a165fc602f9e78a8d425d3a3a
MD5 61a25097bb664c20c72e4c6df347cfae
BLAKE2b-256 d6d90e799cd6ce1cdfe798b461bfe8a482b4a48eee19ad77d7bb86c9fd170c2f

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 566fd9cc522ce19ecaad73582cd8c4cbeb38fb9c42a7eaccba58ab8e003e06ca
MD5 12916c32e248022cf8d56b748cf2a4ff
BLAKE2b-256 6002b8c3d2fc4a1d3e8250302d9180fc21a6f97f3de3a626413da500cd1b8315

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3ba4f340653c6f8ffedf19ea4391a1bc5721577ddd3d830a471e5b2135bbfaba
MD5 cb44985499851f62c47d7d23f6a2dab4
BLAKE2b-256 4a77f9a0d9e05991438f968e1d9801248c1f1a465d1fa451c2867693719fa4bb

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cbbcf014f1fdaba20ddd624a8074251254d966049047741052d4677821731eca
MD5 2d07cf155eeeda115826dc6c67c5a962
BLAKE2b-256 8600761c35930eb26e285a317416d3a3ccd294fe10ac0b78fbfd8b7c11e3ee09

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b539556e92ef285f1ce30142b56039350ddbe216252ff2770cf9ee0785464819
MD5 96b98eb61b016af6cb0b5e28df4cd743
BLAKE2b-256 5ff357b9a088aac4ff9bf6736c72007d38b4acc77ce6df2f1afe7443e90711c1

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8a932b1cb232687244fbcbce2c4cc21cb753e89c8da2f5040d78f3ea6e1e4edd
MD5 c266ad3a05b3137ce5659d97cf2f8eba
BLAKE2b-256 75fd3e259efb282648125231af5e1f8babcd9b771fbc199ee1af2fb5ac9b581a

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1c60af01018429a401d41a515c7aebebff68931e4f95184820f2a1c64340ec66
MD5 5f8b416bfe206bac15863bfd2796385d
BLAKE2b-256 07fe56e7b374abf3d33cad2150158d580c82a00c9f923d945aaa7f88d1c0c45d

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: fastnumbers-4.0.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 58.0 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for fastnumbers-4.0.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 34ad9d87703bbb52eea92b4c01dd4eb63359255f26f10b1f691cef0bef871b17
MD5 c034f7f58a5fa31a5fd660162040d1fd
BLAKE2b-256 b171880f8a1b839c544da7e5013309c2168eb0cc5d1b94ffaf54105908611a41

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 55b1e91f340e7672f4e3378d8cd481f92dacaff4cbad771fae59c38b8d246c3b
MD5 4bef285a0fa37ff04b678ceb771d728a
BLAKE2b-256 a34cb40b2cf2322349209999587197aef7502991e98e1badbd64221ceae1f845

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a2f68cd2fb3c1b7f4353b161f95f064051d5cfaa342cef3d0af8b8eeaf9d022a
MD5 f054f2dd12f1049a6881edd4c9149269
BLAKE2b-256 3288369ba1abf2c3c7da17c482c87fa3e401fe68a65cfe1f5c86937a961531a0

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ebaa356a46622196c78bb131174f5c88ea4a059b0fac3f96cac623864a52ea2d
MD5 26718a5e518ba6194bde00646d2721c1
BLAKE2b-256 0de0a8f77bb98e222d24c07913eb4e00038e7d2ea5797a41b29eb8c0ef98a0b4

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fed315cbcaea43d31b7dddbda3ce0a1d0f30cc6c69159cb06cd804e8a3377c60
MD5 1fa3ca298c5a99cf207a38af22ebebb1
BLAKE2b-256 cae335f3e583fea4398e5f7c2463774b9c326b4d0bb4c5705f3cc4b070265919

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cdd44d3bc01d5731e494f9021407eba7a4079699b1580aad48d27c5f3d63fe9b
MD5 6ccf21bd2e9037c47ab33fda2ffa885a
BLAKE2b-256 a84bc3aab172bec1c98f4213f92db40754fb04fbd8f829b5a17ccc71333e3f6a

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3a5b5235b86786d01b4a60350188fac75f9101c7f763f8eaf17f566c01f543f4
MD5 d069618988ef3c35131b7af707aac529
BLAKE2b-256 aa165c3b326663473237abb611fce32493f1d9cd00f7a285458a34bb78aa051f

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1356e171a83ccb9d7bfe29a3616133d9e5f1f450034ad65c0246d55dacff1093
MD5 d237dd5cf9e80402f7694450622964c5
BLAKE2b-256 af398fd284bf4b27fac56ce24f03a27cfc7d721c168e96629a63788e64bdee3e

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0412cc5bcc8315a0af2083386062fab52a6e1fc0f5857d4d966ca6d908ed9375
MD5 f02d3e71447ed8faff497d963a5c7b6b
BLAKE2b-256 6bf963aa26953ecdde737d5cc857f8bc47b76a47bab3570b1836509c972a866c

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 758fa52b4bd011a028cec6c80f9dfcea70792f1f703997fb622a3b6e5497a974
MD5 679aa99783682b721a9b070fa2dfe6e7
BLAKE2b-256 169ce4ca4596e7f5376967f309f04e5c4df35bece03561908f6f873636e783c5

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 81a0e457fc1ec01eca852353f22dbafb8d54ceab2fa139564c763a68a82ff02c
MD5 e80ce6ce23a4e6a63ec37ddedeb9f9c4
BLAKE2b-256 c0710bf403f746c7fedd845995b846eeca96a24b365d3734c0944fc612433eff

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: fastnumbers-4.0.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 57.8 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for fastnumbers-4.0.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 8579c91669642e6333a319df63dccc7f3b630fec3f3af108973fc05c46de6f74
MD5 cfae7e3bb558029ddb65ecb6dfbe6907
BLAKE2b-256 97e4752e6fa55b290ed6497ae69c954eee36c1898c423e58abd2166add36a037

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 bd185ae6e11a9dea935692f43b95ff2d23626494cdd771acec0d4f77b8b0f855
MD5 e668f62f2c150bd0530df7529c666a41
BLAKE2b-256 baf903ccfb2383b0e6bd50c87724b82854eed550415d87df60d520142c8bdcad

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a37f4105f797d7d3cf5386cb8c4502b4cf2e28e227bedacc61367ec59327cc3a
MD5 1f1b17e808af866a1aae9ab5a779f7b9
BLAKE2b-256 b78dc60e1b1c166ade668dedbdf1ce6becc49062806b98572c37fa0273bd2f99

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 3b32e7abacd9bd7d60311b38fbd8ddce60c81f55c5ad29f84fec0e64438d94b6
MD5 d8c62c173ef2ab5352c6bfdcc5b84d2e
BLAKE2b-256 a524cae9d5ebe3ea59a33341e692b41a8f240efe03bcecd0e59f1aeedfdb85b1

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2b138086c8e70dac0cfb00a00ff7697f9ecac7df25f9209eea63b3d38558e8c6
MD5 8351722cdb27745c9c7b84868ab210db
BLAKE2b-256 77620f83951b6e25fcfecb10674b1cb100843ee24bc68c37a908e4babd295eba

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c3415b26d4c3724500e7970d07e833c9803b5a2dae0c95b5c84c3723d430a664
MD5 60272f000970d46204ff9821d05e0b1d
BLAKE2b-256 4ea593f89eb176fd513340d3092a648b59266cc232078e716e17203400fb58cc

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cbf9c247447390ca9342931eb748242a900a5f80cfe26faec5987fe29cdc1673
MD5 b4ecbfd49d7ac02d420fd1d93a75b3b2
BLAKE2b-256 b0657e4c0c97a882ebfd6c55a538bcca3d8113581fa972dfecd22d103ea62275

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3e66621150d68f39de9d30f2871789802b01e496d75471ffde10088948cb0b81
MD5 b5e4d19d9f5d5285f779088f1d735606
BLAKE2b-256 55fc055c58cc72e88ddc7617fb7a936c1f43b083aeb66cd0d83d751fbe951a63

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page