Skip to main content

Super-fast and clean conversions to numbers.

Project description

https://img.shields.io/pypi/v/fastnumbers.svg https://img.shields.io/pypi/pyversions/fastnumbers.svg https://img.shields.io/pypi/l/fastnumbers.svg https://github.com/SethMMorton/fastnumbers/workflows/Tests/badge.svg https://codecov.io/gh/SethMMorton/fastnumbers/branch/main/graph/badge.svg

Super-fast and clean conversions to numbers.

fastnumbers is a module with the following three objectives (in order of decreasing importance as to why the module was created):

  1. Provide a set of convenience functions that wrap calls to int and float and provides easy, concise, powerful, fast and flexible error handling.

  2. Provide a set of functions that can be used to rapidly identify if an input could be converted to int or float.

  3. Provide drop-in replacements for the Python built-in int and float that are on par or faster with the Python equivalents (see the Timing section for details). These functions should behave identically to the Python built-ins except for a few specific corner-cases as mentioned in the API documentation for those functions.

    • PLEASE read the quick start for these functions to fully understand the caveats before using them.

What kind of speedups can you expect? Here are some highlights, but please see the Timing section for the raw data if you want details.

  • Up to 2x faster conversion of strings to integers than the built-in int() function

  • Up to 5x faster conversion of strings to floats than the built-in float() function (possibly greater for very long strings)

  • Up to 10x faster handling of errors during conversion than using user-side error handling

  • On top of the above, operations to convert a list of strings (with the map option or try_array function) is 2x faster than the equivalent list comprehension.

NOTICE: As of fastnumbers version 4.0.0, only Python >= 3.7 is supported.

NOTICE: As of fastnumbers version 4.0.0, the functions fast_real, fast_float, fast_int, fast_forceint, isreal, isfloat, isint, and isintlike have been deprecated and are replaced with try_real, try_float, try_int, try_forceint, check_real, check_float, check_int, and check_intlike, respectively. These new functions have more flexible APIs and have names that better reflect the intent of the functions. The old functions can still be used (they will never be removed from fastnumbers), but the new ones should be preferred for new development.

NOTICE: As of fastnumbers version 4.0.0, query_type now sets allow_underscores to False by default instead of True.

Quick Start

There are three broad categories of functions exposed by fastnumbers. The below quick start will demonstrate each of these categories. The quick start is “by example”, and will show a sample interactive session using the fastnumbers API.

Error-Handling Functions

try_float will be used to demonstrate the functionality of the try_* functions.

>>> from fastnumbers import RAISE, try_float
>>> # Convert string to a float
>>> try_float('56.07')
56.07
>>> # Integers are converted to floats
>>> try_float(54)
54.0
>>>
>>> # Unconvertable string returned as-is by default
>>> try_float('bad input')
'bad input'
>>> # Unconvertable strings can trigger a default value
>>> try_float('bad input', on_fail=0)
0
>>>
>>> # One can ask inf or nan to be substituted with another value
>>> try_float('nan')
nan
>>> try_float('nan', nan=0.0)
0.0
>>> try_float(float('nan'), nan=0.0)
0.0
>>> try_float('56.07', nan=0.0)
56.07
>>>
>>> # The default built-in float behavior can be triggered with
>>> # RAISE given to "on_fail".
>>> try_float('bad input', on_fail=RAISE) #doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
  ...
ValueError: invalid literal for float(): bad input
>>>
>>> # A function can be used to return an alternate value for invalid input
>>> try_float('bad input', on_fail=len)
9
>>> try_float(54, on_fail=len)
54.0
>>>
>>> # Single unicode characters can be converted.
>>> try_float('\u2164')  # Roman numeral 5 (V)
5.0
>>> try_float('\u2466')  # 7 enclosed in a circle
7.0

try_int behaves the same as try_float, but for integers.

>>> from fastnumbers import try_int
>>> try_int('1234')
1234
>>> try_int('\u2466')
7

try_real is like try_float or try_int depending on if there is any fractional component of thi return value.

>>> from fastnumbers import try_real
>>> try_real('56')
56
>>> try_real('56.0')
56
>>> try_real('56.0', coerce=False)
56.0
>>> try_real('56.07')
56.07
>>> try_real(56.07)
56.07
>>> try_real(56.0)
56
>>> try_real(56.0, coerce=False)
56.0

try_forceint always returns an integer.

>>> from fastnumbers import try_forceint
>>> try_forceint('56')
56
>>> try_forceint('56.0')
56
>>> try_forceint('56.07')
56
>>> try_forceint(56.07)
56

Fast operations on lists and other iterables

Each of the try_* functions have a map option causes the function to accept an iterable of items to convert and returns a list. Using try_float as an example, the following are all functionally equivalent.

>>> from fastnumbers import try_float
>>> iterable = ["5", "4.5", "34567.6", "32"]
>>> try_float(iterable, map=list) == list(map(try_float, iterable))
True
>>> try_float(iterable, map=list) == [try_float(x) for x in iterable]
True
>>> try_float(iterable, map=list) == list(try_float(iterable, map=True))
True

The difference is that the map option is 2x the speed of the list comprehension method, and 1.5x the speed of the map method. The reason is that it avoids Python function call overhead on each iteration. Note that True causes the function to return an iterator, and list causes it to return a list. In practice the performance of these are similar (see Timing for raw data).

If you need to store your output in a numpy array, you can use try_array to do this conversion directly. This function has some additional handling for overflow that is not present in the other fastnumbers functions that may come in handy when dealing with numpy arrays.

>>> from fastnumbers import try_array
>>> import numpy as np
>>> iterable = ["5", "4.5", "34567.6", "32"]
>>> np.array_equal(np.array(try_float(iterable, map=list), dtype=np.float64), try_array(iterable))
True

You will see about a 2x speedup of doing this in one step over converting to a list then converting that list to an array.

About the on_fail option

The on_fail option is a way for you to do anything in the event that the given input cannot be converted to a number. It can

  • return given object as-is if set to fastnumbers.INPUT (this is the default)

  • raise a ValueError if set to fastnumbers.RAISE

  • return a default value if given any non-callable object

  • call a function with the given object if given a single-argument callable

Below are a couple of ideas to get you thinking.

NOTE:: There is also an on_type_error option that behaves the same as on_fail except that a) it is triggered when the given object is of an invalid type and b) the default value is fastnumbers.RAISE, not fastnumbers.INPUT.

>>> from fastnumbers import INPUT, RAISE, try_float
>>> # You want to convert strings that can be converted to numbers, but
>>> # leave the rest as strings. Use fastnumbers.INPUT (the default)
>>> try_float('45.6')
45.6
>>> try_float('invalid input')
'invalid input'
>>> try_float('invalid input', on_fail=INPUT)
'invalid input'
>>>
>>>
>>>
>>> # You want to convert any invalid string to NaN
>>> try_float('45.6', on_fail=float('nan'))
45.6
>>> try_float('invalid input', on_fail=float('nan'))
nan
>>>
>>>
>>>
>>> # Simple callable case, send the input through some function to generate a number.
>>> try_float('invalid input', on_fail=lambda x: float(x.count('i')))  # count the 'i's
3.0
>>>
>>>
>>>
>>> # Suppose we know that our input could either be a number, or if not
>>> # then we know we just have to strip off parens to get to the number
>>> # e.g. the input could be '45' or '(45)'. Also, suppose that if it
>>> # still cannot be converted to a number we want to raise an exception.
>>> def strip_parens_and_try_again(x):
...     return try_float(x.strip('()'), on_fail=RAISE)
...
>>> try_float('45', on_fail=strip_parens_and_try_again)
45.0
>>> try_float('(45)', on_fail=strip_parens_and_try_again)
45.0
>>> try_float('invalid input', on_fail=strip_parens_and_try_again) #doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
  ...
ValueError: invalid literal for float(): invalid input
>>>
>>>
>>>
>>> # Suppose that whenever an invalid input is given, it needs to be
>>> # logged and then a default value is returned.
>>> def log_and_default(x, log_method=print, default=0.0):
...     log_method("The input {!r} is not valid!".format(x))
...     return default
...
>>> try_float('45', on_fail=log_and_default)
45.0
>>> try_float('invalid input', on_fail=log_and_default)
The input 'invalid input' is not valid!
0.0
>>> try_float('invalid input', on_fail=lambda x: log_and_default(x, default=float('nan')))
The input 'invalid input' is not valid!
nan

Checking Functions

check_float will be used to demonstrate the functionality of the check_* functions. There is also the query_type function.

>>> from fastnumbers import check_float
>>> from fastnumbers import ALLOWED, DISALLOWED, NUMBER_ONLY, STRING_ONLY
>>> # Check that a string can be converted to a float
>>> check_float('56')
True
>>> check_float('56', strict=True)
False
>>> check_float('56.07')
True
>>> check_float('56.07 lb')
False
>>>
>>> # Check if a given number is a float
>>> check_float(56.07)
True
>>> check_float(56)
False
>>>
>>> # Specify if only strings or only numbers are allowed
>>> check_float(56.07, consider=STRING_ONLY)
False
>>> check_float('56.07', consider=NUMBER_ONLY)
False
>>>
>>> # Customize handling for nan or inf (see API for more details)
>>> check_float('nan')
False
>>> check_float('nan', nan=ALLOWED)
True
>>> check_float(float('nan'))
True
>>> check_float(float('nan'), nan=DISALLOWED)
False

check_int works the same as check_float, but for integers.

>>> from fastnumbers import check_int
>>> check_int('56')
True
>>> check_int(56)
True
>>> check_int('56.0')
False
>>> check_int(56.0)
False

check_real is very permissive - any float or integer is accepted.

>>> from fastnumbers import check_real
>>> check_real('56.0')
True
>>> check_real('56')
True
>>> check_real(56.0)
True
>>> check_real(56)
True

check_intlike checks if a number is “int-like”, if it has no fractional component.

>>> from fastnumbers import check_intlike
>>> check_intlike('56.0')
True
>>> check_intlike('56.7')
False
>>> check_intlike(56.0)
True
>>> check_intlike(56.7)
False

The query_type function can be used if you need to determine if a value is one of many types, rather than whether or not it is one specific type.

>>> from fastnumbers import query_type
>>> query_type('56.0')
<class 'float'>
>>> query_type('56')
<class 'int'>
>>> query_type(56.0)
<class 'float'>
>>> query_type(56)
<class 'int'>
>>> query_type(56.0, coerce=True)
<class 'int'>
>>> query_type('56.0', allowed_types=(float, int))
<class 'float'>
>>> query_type('hey')
<class 'str'>
>>> query_type('hey', allowed_types=(float, int))  # returns None

Drop-in Replacement Functions

PLEASE do not take it for granted that these functions will provide you with a speedup - they may not. Every platform, compiler, and data-set is different, and you should perform a timing test on your system with your data to evaluate if you will see a benefit. As you can see from the data linked in the Timing section, the amount of speedup you will get is particularly data-dependent. In general you will see a performance boost for floats (and this boost increases as the size of the float increases), but for integers it is largely dependent on the length of the integer. You will likely not see a performance boost if the input are already numbers instead of strings.

NOTE: in the below examples, we use from fastnumbers import int instead of import fastnumbers. This is because calling fastnumbers.int() is a bit slower than just int() because Python has to first find fastnumbers in your namespace, then find int in the fastnumbers namespace, instead of just finding int in your namespace - this will slow down the function call and defeat the purpose of using fastnumbers. If you do not want to actually shadow the built-in int function, you can do from fastnumbers import int as fn_int or something like that.

>>> # Use is identical to the built-in functions
>>> from fastnumbers import float, int
>>> float('10')
10.0
>>> int('10')
10
>>> float('bad input') #doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
  ...
ValueError: invalid literal for float(): bad input

real is provided to give a float or int depending on the fractional component of the input.

>>> from fastnumbers import real
>>> real('56.0')
56
>>> real('56.7')
56.7
>>> real('56.0', coerce=False)
56.0

Timing

Just how much faster is fastnumbers than a pure python implementation? Please look https://github.com/SethMMorton/fastnumbers/tree/main/profiling.

High-Level Algorithm

For integers, CPython goes to great lengths to ensure that your string input is converted to a number correctly and losslessly (you can prove this to yourself by examining the source code for integer conversions). This extra effort is only needed for integers that cannot fit into a 64-bit integer data type - for those that can, a naive algorithm of < 10 lines of C code is sufficient and significantly faster. fastnumbers uses a heuristic to determine if the input can be safely converted with the much faster naive algorithm, and if so it does so, falling back on the CPython implementation for longer input strings. Most real-world numbers pass the heuristic and so you should generally see improved performance with fastnumbers for integers.

For floats, fastnumbers utilizes the ultra-fast fast_float::from_chars function to convert strings representing floats into a C double both quickly and safely - the conversion provides the same accuracy as the CPython float conversion function but instead of scaling linearly with length of the input string it seems to have roughly constant performance. By completely bypassing the CPython converter we get significant performance gains with no penalty, so you should always see improved performance with fastnumbers for floats.

Installation

Use pip!

$ pip install fastnumbers

How to Run Tests

Please note that fastnumbers is NOT set-up to support python setup.py test.

The recommended way to run tests is with tox. Suppose you want to run tests for Python 3.8 - you can run tests by simply executing the following:

$ tox run -e py38

tox will create virtual a virtual environment for your tests and install all the needed testing requirements for you.

If you want to run testing on all supported Python versions you can simply execute

$ tox run

You can change the how much “random” input your tests will try with

# Run fewer tests with "random" input - much faster
$ tox run -- --hypothesis-profile fast

# Run more tests with "random" input - takes much longer but is more thorough
$ tox run -- --hypothesis-profile thorough

If you want to run the performce analysis yourself, you can execute

# This assumes Python 3.9 - adjust for the version you want to profile
$ tox run -e py39-prof

If you do not wish to use tox, you can install the testing dependencies with the dev-requirements.txt file and then run the tests manually using pytest.

$ pip install -r dev/requirements.txt
$ pytest

Author

Seth M. Morton

History

Please visit the changelog on GitHub or in the documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastnumbers-5.0.0.tar.gz (179.0 kB view details)

Uploaded Source

Built Distributions

fastnumbers-5.0.0-cp311-cp311-win_amd64.whl (96.5 kB view details)

Uploaded CPython 3.11 Windows x86-64

fastnumbers-5.0.0-cp311-cp311-win32.whl (89.6 kB view details)

Uploaded CPython 3.11 Windows x86

fastnumbers-5.0.0-cp311-cp311-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

fastnumbers-5.0.0-cp311-cp311-musllinux_1_1_i686.whl (2.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

fastnumbers-5.0.0-cp311-cp311-musllinux_1_1_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

fastnumbers-5.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fastnumbers-5.0.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

fastnumbers-5.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

fastnumbers-5.0.0-cp311-cp311-macosx_11_0_arm64.whl (150.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fastnumbers-5.0.0-cp311-cp311-macosx_10_9_x86_64.whl (147.5 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

fastnumbers-5.0.0-cp311-cp311-macosx_10_9_universal2.whl (288.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

fastnumbers-5.0.0-cp310-cp310-win_amd64.whl (96.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

fastnumbers-5.0.0-cp310-cp310-win32.whl (89.6 kB view details)

Uploaded CPython 3.10 Windows x86

fastnumbers-5.0.0-cp310-cp310-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

fastnumbers-5.0.0-cp310-cp310-musllinux_1_1_i686.whl (2.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

fastnumbers-5.0.0-cp310-cp310-musllinux_1_1_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

fastnumbers-5.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fastnumbers-5.0.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

fastnumbers-5.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

fastnumbers-5.0.0-cp310-cp310-macosx_11_0_arm64.whl (150.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fastnumbers-5.0.0-cp310-cp310-macosx_10_9_x86_64.whl (148.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

fastnumbers-5.0.0-cp310-cp310-macosx_10_9_universal2.whl (289.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

fastnumbers-5.0.0-cp39-cp39-win_amd64.whl (96.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

fastnumbers-5.0.0-cp39-cp39-win32.whl (89.6 kB view details)

Uploaded CPython 3.9 Windows x86

fastnumbers-5.0.0-cp39-cp39-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

fastnumbers-5.0.0-cp39-cp39-musllinux_1_1_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

fastnumbers-5.0.0-cp39-cp39-musllinux_1_1_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

fastnumbers-5.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fastnumbers-5.0.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

fastnumbers-5.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

fastnumbers-5.0.0-cp39-cp39-macosx_11_0_arm64.whl (150.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fastnumbers-5.0.0-cp39-cp39-macosx_10_9_x86_64.whl (148.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

fastnumbers-5.0.0-cp39-cp39-macosx_10_9_universal2.whl (289.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

fastnumbers-5.0.0-cp38-cp38-win_amd64.whl (96.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

fastnumbers-5.0.0-cp38-cp38-win32.whl (89.6 kB view details)

Uploaded CPython 3.8 Windows x86

fastnumbers-5.0.0-cp38-cp38-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

fastnumbers-5.0.0-cp38-cp38-musllinux_1_1_i686.whl (2.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

fastnumbers-5.0.0-cp38-cp38-musllinux_1_1_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

fastnumbers-5.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

fastnumbers-5.0.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

fastnumbers-5.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

fastnumbers-5.0.0-cp38-cp38-macosx_11_0_arm64.whl (150.5 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

fastnumbers-5.0.0-cp38-cp38-macosx_10_9_x86_64.whl (148.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

fastnumbers-5.0.0-cp38-cp38-macosx_10_9_universal2.whl (288.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

fastnumbers-5.0.0-cp37-cp37m-win_amd64.whl (96.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

fastnumbers-5.0.0-cp37-cp37m-win32.whl (88.8 kB view details)

Uploaded CPython 3.7m Windows x86

fastnumbers-5.0.0-cp37-cp37m-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

fastnumbers-5.0.0-cp37-cp37m-musllinux_1_1_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

fastnumbers-5.0.0-cp37-cp37m-musllinux_1_1_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

fastnumbers-5.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

fastnumbers-5.0.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

fastnumbers-5.0.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

fastnumbers-5.0.0-cp37-cp37m-macosx_10_9_x86_64.whl (147.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file fastnumbers-5.0.0.tar.gz.

File metadata

  • Download URL: fastnumbers-5.0.0.tar.gz
  • Upload date:
  • Size: 179.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for fastnumbers-5.0.0.tar.gz
Algorithm Hash digest
SHA256 c991d871d466d09aed43932e9ed8584cf5acadcd6dd1d116fc20e0706fa4c5cb
MD5 721fdc415089b837b70678251b398727
BLAKE2b-256 df7c0ee0fb6976edb0908bc5744e4a28d6e19840b0c768b6907c9bf7bfa25fa7

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 43e90f152ff89f7b3bf5cc69e23d39076b3432f32557217da7cc3767c5de79fa
MD5 d28df570e847572efa38db7565a84b22
BLAKE2b-256 049510caf78e5f4a4cd828a7f165b9782889cff300e731c049233372a9843b2a

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: fastnumbers-5.0.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 89.6 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for fastnumbers-5.0.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 d97ac9645cf5da6173523cc35c85f87770c0632f68824e20cf0b30692b491ee6
MD5 c08b3fbf199112b73f49c4bcb3ac5a7e
BLAKE2b-256 8e051658b6cc83da296510a40df39d4272969740b54c3d98b3d931efe8861206

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6d20eb65d7a0fa683498c7e0f143b23983fd9e20ea872c25fc6f586bb869890c
MD5 aeb37f9198216d32cf02ea1aefbe50fc
BLAKE2b-256 c4258cf44aa8e0d880b39df8fccbf6419747b17b552da13f83ada5774b46e933

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b98050f7f500b1c9d71c870adaaeabf2717ac7f5cc09f41a8092aed2865debb3
MD5 678bfa89a45a660d0f83f6cbc0377ca4
BLAKE2b-256 e778a9d0d55130edc6148c501c36dfe0fb8186e702c3420e0c6c18c739866c33

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 2382c72672668b64f634c165d644c5547fc0f5da746ec11608f4845c73bf30c4
MD5 f8161b3f803d4079acf86783d841a3b5
BLAKE2b-256 a13d64b35a4c7e7c1a112061314b638ac3db486cc736780fb8996880f79bae1f

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 efd031539c045bc38773714854afabd360f1fa0b5d06a28e0ab5a1696b469e0d
MD5 746261987e87d58b7d5c941b4c897094
BLAKE2b-256 bb865cafd01f31f86a1b6778d82fa1b4a5255dfdc43c7c7dcb5b80d8c57d792b

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c5c750a317450baa684845507d179f53b93937584bfecab3b4cc031bc78eabb8
MD5 b32f0c536edee3b7e605bfe28987e960
BLAKE2b-256 6d47d1404c4013e1369e1c76c0641f4e9522dbdc14463db94d5fa58f968db4c5

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 863c64af1135ec8cc685b2693c32aad1b0f68b3da3c4bb7264fc99ba84ab244e
MD5 71ee20d485bc84d47b933515aaead2f1
BLAKE2b-256 90afe99e116521a7a4c39acc34cc1352d0be2b9dad1386015d0f05640028c912

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fbcf847de73b0d3ae30031b001fa08346807a277352e52ee890041dd342e7e1e
MD5 18625fef868ccab1de5cbd311a7a1528
BLAKE2b-256 fae0b484fa301340b576cc067d83a0841eb074749f60579f3341de0dcd4cd964

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c5b46a2fd4e16fc40fb1cd32acfc72cfada631afc4a16a83ab721d7aa3968cf4
MD5 fd186d49bec93b15a407ace3a2de980d
BLAKE2b-256 43170973843263986491956802497abbfa0cee3160e49cbc003527bdcefbb7b9

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 085b70a8dd6406105573bcd10b62b7abadc78eff8d64b62f3fb3e2e0de362b98
MD5 19db26d5c3ea2f83aa96907376e41bb3
BLAKE2b-256 ac566cbab55ba2e7fa0d33ec3de04d2e8df57c8d174c8cdf655002d84aa93b77

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 48751cd079648ca0aea62d222b32376b77833ac2ae14a5624edfb5dd8c194e96
MD5 e5b920ceafd390f2bdfe2e2749a4fb79
BLAKE2b-256 a94ffbcda2330d129c66288a0dae96fc09952001185737d74a616d3219d6d2c8

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: fastnumbers-5.0.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 89.6 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for fastnumbers-5.0.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 27b0e7478ffe769dcde7ca0cde1aa7e7cbb2cd5a43d9590cc9cf7d0fafebbf33
MD5 9a6f668789e5541632fb713c4ac4092d
BLAKE2b-256 64740d4b6e67491d1d675c44f59da20f21d0376b1edeb23d68f6c89e89d9c66c

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ca575995f94ae696349d0d5c27f1c22230428b00bf206a78515e91d9d92c411e
MD5 96573cacf0d77fc8f0899801ba780a84
BLAKE2b-256 2d17c2c2a23b466fc9bc5d82e03be565d630a490eda815caeb40efa142dc4468

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 014e3ff531a03420a9386cd81a5b7e114440904503df4f27dc5ee08a3441cabb
MD5 e62821307389d75d9bfcbf6085d9e279
BLAKE2b-256 104c02686c1bb051e674be0a356a3c596e25642cab25aa826d1d2aff1f09f40a

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 c18be4edce4fcc582c9531de4ad4ddcf9e5212401586f4cf5ae207a0f2cf33c0
MD5 a9502ee2bd03bb0611cfc9ac10d72df9
BLAKE2b-256 9dc45d5b40a2560c58a385de5b3ee37907edae3ebef0e20db189a6474d2ca351

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ea1066c7cfcc555aae260ef31bf02434a5d10f9dfa0999d3c969cd4a5d171d8b
MD5 30f7f79482277bcaa94baaf3e92c1afb
BLAKE2b-256 ea904e08809ddc8285d5bd1784b5ed8d96a8c4c4d7169f8774411d022a5267aa

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9e342859748beb309631b8c5cd26c7924050d227ac44b0b14e76d1ff29234c10
MD5 18b43d067534df5e3c2f715e51610f33
BLAKE2b-256 a03419a2d0fb9c57ff1d106f4a20f61d08a42273f76a7e459d3219a0e747b358

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 725e9d0c5591d8bbe551a525068d3c80f2f59aab4431d461ecd44a588ff5f621
MD5 81b2196446b93f2559f846f898b9525a
BLAKE2b-256 33d32872a3feec522bfb0c60796d9e0680962804d3f317f7c9bd469bf90e8964

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 03d6927b3098e57d72e05fc266a6080a5f2a762746e95c92ff0c00ed58466ee3
MD5 236148863981ad32c4b8a2ca965e605d
BLAKE2b-256 a451f4e3aa1d582bdfa60edba57ed8affc92cad1453a10adb935abd08d99ff7e

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6c957dea34642c0949ba426cf4c5839961f0c92345c4467263f8209d6764deb7
MD5 90f34b46dc868fa5d5f861fff7cb0300
BLAKE2b-256 0a898a15f90c47d03e0b751060052f565b56497ec5ac32210e5338c7506142f7

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 cb32d276d05ef4c9b9a9a9e6cd611d442e7a2cd9df1c8288ce3ba0c15b02242b
MD5 ea7ccdb222cd92b7991948c1b2155c2e
BLAKE2b-256 6523747c73646b29d079a0ad3a26ebbc7e1d86faf19701b94c828dbb8ba56e97

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e6b1d466db9a3b2672dcf3345371bb7cfcd25f10a9aac3f396b833a7c0aee3ab
MD5 5390da20736432188991fbd5f0d467d2
BLAKE2b-256 dfa23f8b37628a12a799e2cecb3b51b8a646d35a4f14767881e01b51df4d3a22

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: fastnumbers-5.0.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 89.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for fastnumbers-5.0.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 e0bf77bc163acf88eb7415fa740a77896b3bff1c70020b0a8171421de4a74b69
MD5 7ab0fc8e9189736c908e914f7e952b57
BLAKE2b-256 4d4be3acec91e883a21c3b035de7d0de4c58336f0f13c3d0933611cbcd257e8a

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 eeda6e5839c6c3df54a599c13fea43cee25c4c1a4de282c50605fe1cb6907612
MD5 5409fce6ef8f689f0936d703a34cf670
BLAKE2b-256 4537815355b85af98fcbe5ec6c288f946cb5aa2c2134357c7f7b9f14efb95896

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 74941f166fa6837a96478a55508dc32c10a76d439fee441b04914d5a60ae10d7
MD5 ae5ed1271184a5eda5e063d487e4b3e3
BLAKE2b-256 075edb9a4e7b89cbce926a792f55d31302813a23fd026b9262e6973413213015

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 b1a853b6cee8df96ca3754ff0e78e68add471108c6ff85dde679b9425113f4b7
MD5 6748d5a85593bde14a076d349bacc02a
BLAKE2b-256 1ef9edee41811867576c0d382f684dc1598728c25ffd9715c4ba729cabcca379

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 20027b3bdbcd48b8645150770974a3643481feda46adc141c843d4ea103ef835
MD5 ed8b0c132647a64fcb99b99d48cfc236
BLAKE2b-256 f28ffae44f40a44a1db8ab3b4990e1f4452e9869f2aac1b412e0ae5abeb9893c

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 223c4c110423ece1181d7efa75d85b81be08049d8d64b75850ec34b78b7d7e47
MD5 c7c3131e853dcc141c522fa08420718f
BLAKE2b-256 c95a643c82caf1c84939368809a901857f0f066931f1459cd5fd89b55d5c444f

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bbdad5bf69742af873dfb3331bc40d7c8f4a64ae6b13c615e7a5d97751af9e0a
MD5 d42c597ba1c9fd6e5a23e4b4473cb89a
BLAKE2b-256 f7d630d70f81f986acda5aed66f4f78d86da765622e3593866bd52ca8c9d7ac0

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f025676eeef42e7db1f1f2e49a478aacf48b5dd8a443919a0454780053c80aa9
MD5 42fb4cf43760b32499a804e652a06986
BLAKE2b-256 4a8b658e58429a785af1c4c535ee67b467ad88ae28bbcc9ca6ebf7bf9990d787

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 82deaa91f7b989cfd4745ebb859375618a4dcc6bcb37f754d93602a4fd49b635
MD5 92775b7e529a2e71ce29c09452adc6c1
BLAKE2b-256 5d88622ea98eb9080ec34673db3520ae1a2345312b4c75f849aa16d1ef268bf3

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 49c049469e6b4d2ff3afaf2417387c19744c0e7d513f1bc20a7124f032983e4e
MD5 f269092510b693a2934e0ac9a2f106f1
BLAKE2b-256 27514fd822ab54ac9f50338990a0b6db48693217b6a79a8bcc72c3040f3ccfcc

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 fad42bc39ed2213b7301bc34699e4bed264430af9b7f0bc14e6076bcb8d11fc7
MD5 0e6b7254005ca1dc958ae5de8fee62a8
BLAKE2b-256 d589643e5d78d9a8bd39000eeb4870d9a26cd4bf03aeda04c51890bded552b20

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: fastnumbers-5.0.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 89.6 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for fastnumbers-5.0.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 6f6d0888ffc3b133948f9607cb4354b72961b8b90f88346640241e9cb0c51d9d
MD5 fd94866e7b4106581ebe74d529c7a4d2
BLAKE2b-256 62aae58be2a834e2412f6467a484bf985e8fcb636c332380d0006ab3eafdf3ad

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5adc5b1144e76883527612ddb5634f06fd560a4642d6be207ad616f56bc2f186
MD5 679dcb3130363de4ffb75065e1ab9ead
BLAKE2b-256 54c8e499602f3c84d5ec4addef532885eaafcba3c32708ee5346b0083ec01a0f

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c34a3b5c829aa7f2fdccfec86769c8f5e8c4f7ad5fd074719fd3bc0815674859
MD5 ccf74d5690b60199c709e1187bd1a220
BLAKE2b-256 d52c3c93743cf1e57f405290353f414d2383d9aca8db505e99d256ddb51286ec

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 99a5be03ca9de7f6c4907f0aed60181440351dc2437dc3310bec8605995c5d6b
MD5 1a406a1a6f488d57180e8917d29f7997
BLAKE2b-256 9e670ad9a0b6fb9e6735e5dda76668372b3a2740f9e4cfee16ddd2d33087ca6d

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7a2b692dae4ba9880c86f11966b01043e70301de819f7697aaf71248c91a62f8
MD5 21c808a794c4d0ca05dbd7c3515dc53f
BLAKE2b-256 f774e4bbd21a8a7736ec8feaf392f22585b822b6f973eb7c001279a6e93a3f34

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1b5dfa07b013ccbeb79dc6074b37add01c3787720d1306947d1b4ffb7129a0ce
MD5 1ab885c79cfa8b26563097cc2c4e2d99
BLAKE2b-256 d589ac9169d27c27838b018b57482da4fc08e7e03aadc17293eafbc2498c2e9a

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 09125cbdf4600ca571b3849057eddeccec850d22a359ee6c6f9132d9881b72ad
MD5 12a041e2d403a84c55eeacb05314034d
BLAKE2b-256 0a5693d3d2e1b7e5ffae85247f0eba4be8919dce36f076d1bdea6e1075bec751

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1c7035ef9c0c21ccd88b38305c58531f7c4a2da07c0bcc3d0163ed0c1db63656
MD5 54e57067a6ec083090de27700c2c8025
BLAKE2b-256 c5ba0e09459791d7a6ce44f939d7bb7f22146813ccf07832fbd5185f606326e1

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6eb4d436476cc0acfd89f680d731267c91f4bca70b38fd22647b5620067a0abf
MD5 055917e5f211b028dda3e427817c3dac
BLAKE2b-256 272fdfb159a90a82a048591d3392b97a61c357f52e7ba41557a45c72498f8f2d

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 037581305637900dd9529b4ffbf28fa92a420eac0a99fb11b8bad0766489f323
MD5 4f15d4bb5debe316b57bebafc1c9f9ca
BLAKE2b-256 45b7fb71d5a5639894e7124eeb64d7726ea3f3c7fd9f787d577dfe4d19318100

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f80bc71b621a0c85a0ea07712d465bfcb8cf40f26400bee75638f83b5f890a41
MD5 428d2bdae0612f739f703cba7fc7a897
BLAKE2b-256 e01ea80d9a563c49b39427bb027ca99155bba8e67fe3145dddc7c0cadbb90b81

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: fastnumbers-5.0.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 88.8 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for fastnumbers-5.0.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 1ac4e0d0c3c62237edfb16e5517b17004e0d981cb8b0778b3ad3a9c82f5ee166
MD5 7daced1f3b7852c71c1f6f37cb232272
BLAKE2b-256 17ef356a07d17757799d9d5db2831561576f4cc7fa8ecf84f15ba1bf2e3f0633

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 81a2624f54f2e0c41cf0ca16fe20a945ac40a31e9c1a5fda1ae04b95821d2e1f
MD5 1ffc6add6ec3a40f4a024144f2d73a04
BLAKE2b-256 f2f49d7f014c929718301f95b2be65f2bdd61db39946d32215ddb84df70b615c

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 9b5071343c309e76c5882bfd295af2738e2ebb1ab412784138d38ba9d954a2b2
MD5 e2dbddea72f66bb6b613e92c2f94a4bd
BLAKE2b-256 504446e9b27f33c763a5e12357c5d9946ba2f6bf44b359833109cbbe1fe8c1ac

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 0ffbbae3be17be4799aff0594efb9cead1d2c8a5d284f9942c470ce42eefd13c
MD5 7dd30febfe7108bdf87831bbc00249b0
BLAKE2b-256 f7a2a3a26fcd0fd25f69d2d7df4402243e25846adbcc4b62ecfa2bab9f49f64b

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 31a73ca16624cf2dfc0da8d88717759f93cdc1a0e132c1a930989b738815d3e6
MD5 aea1b4c4756ec00afb3c11c8503b7933
BLAKE2b-256 937f92d252f186d39d36fe9ebd3d5a5e88b7ce8036597a6ddabf783550cc516d

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a8edeea0b83b608f797bd23f0d4e0f1b8128feb969a24bf221a620769949458a
MD5 15046bdbc210cc6be3aee85d1e5e7b64
BLAKE2b-256 f7d99efc84c38a80a9ad24444dfe19ac5ba63630657fe1080897b0d161025fd4

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0ca9246b95e6a6645e364f7624c2da3563e7b4fc14fa17dcb04dcb04e47f5de0
MD5 d7d885995b1a0af0e7d5b74f984abdac
BLAKE2b-256 0a9b07ff4a1fb71c0a61fd27679747fb119bb61eb2e3ec4543b6c55539cd7a5d

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e77ce4c67a00ab2f93248006a490812eec92a04d624bf73cd194c7735c021a1c
MD5 a93be4006712ba25ef0d19ed5fe637af
BLAKE2b-256 36d455e5a6c925bd2af241e86597c150f1e767fcebb4fcd3b99ca4f0a48a23d8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page