Skip to main content

Super-fast and clean conversions to numbers.

Project description

https://img.shields.io/pypi/v/fastnumbers.svg https://img.shields.io/pypi/pyversions/fastnumbers.svg https://img.shields.io/pypi/l/fastnumbers.svg https://github.com/SethMMorton/fastnumbers/workflows/Tests/badge.svg https://codecov.io/gh/SethMMorton/fastnumbers/branch/main/graph/badge.svg

Super-fast and clean conversions to numbers.

fastnumbers is a module with the following three objectives (in order of decreasing importance as to why the module was created):

  1. Provide a set of convenience functions that wrap calls to int and float and provides easy, concise, powerful, fast and flexible error handling.

  2. Provide a set of functions that can be used to rapidly identify if an input could be converted to int or float.

  3. Provide drop-in replacements for the Python built-in int and float that are on par or faster with the Python equivalents (see the Timing section for details). These functions should behave identically to the Python built-ins except for a few specific corner-cases as mentioned in the API documentation for those functions.

    • PLEASE read the quick start for these functions to fully understand the caveats before using them.

What kind of speedups can you expect? Here are some highlights, but please see the Timing section for the raw data if you want details.

  • Up to 2x faster conversion of strings to integers than the built-in int() function

  • Up to 5x faster conversion of strings to floats than the built-in float() function (possibly greater for very long strings)

  • Up to 10x faster handling of errors during conversion than using user-side error handling

  • On top of the above, operations to convert a list of strings (with the map option or try_array function) is 2x faster than the equivalent list comprehension.

NOTICE: As of fastnumbers version 4.0.0, only Python >= 3.7 is supported.

NOTICE: As of fastnumbers version 4.0.0, the functions fast_real, fast_float, fast_int, fast_forceint, isreal, isfloat, isint, and isintlike have been deprecated and are replaced with try_real, try_float, try_int, try_forceint, check_real, check_float, check_int, and check_intlike, respectively. These new functions have more flexible APIs and have names that better reflect the intent of the functions. The old functions can still be used (they will never be removed from fastnumbers), but the new ones should be preferred for new development.

NOTICE: As of fastnumbers version 4.0.0, query_type now sets allow_underscores to False by default instead of True.

Quick Start

There are three broad categories of functions exposed by fastnumbers. The below quick start will demonstrate each of these categories. The quick start is “by example”, and will show a sample interactive session using the fastnumbers API.

Error-Handling Functions

try_float will be used to demonstrate the functionality of the try_* functions.

>>> from fastnumbers import RAISE, try_float
>>> # Convert string to a float
>>> try_float('56.07')
56.07
>>> # Integers are converted to floats
>>> try_float(54)
54.0
>>>
>>> # Unconvertable string returned as-is by default
>>> try_float('bad input')
'bad input'
>>> # Unconvertable strings can trigger a default value
>>> try_float('bad input', on_fail=0)
0
>>>
>>> # One can ask inf or nan to be substituted with another value
>>> try_float('nan')
nan
>>> try_float('nan', nan=0.0)
0.0
>>> try_float(float('nan'), nan=0.0)
0.0
>>> try_float('56.07', nan=0.0)
56.07
>>>
>>> # The default built-in float behavior can be triggered with
>>> # RAISE given to "on_fail".
>>> try_float('bad input', on_fail=RAISE) #doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
  ...
ValueError: invalid literal for float(): bad input
>>>
>>> # A function can be used to return an alternate value for invalid input
>>> try_float('bad input', on_fail=len)
9
>>> try_float(54, on_fail=len)
54.0
>>>
>>> # Single unicode characters can be converted.
>>> try_float('\u2164')  # Roman numeral 5 (V)
5.0
>>> try_float('\u2466')  # 7 enclosed in a circle
7.0

try_int behaves the same as try_float, but for integers.

>>> from fastnumbers import try_int
>>> try_int('1234')
1234
>>> try_int('\u2466')
7

try_real is like try_float or try_int depending on if there is any fractional component of thi return value.

>>> from fastnumbers import try_real
>>> try_real('56')
56
>>> try_real('56.0')
56
>>> try_real('56.0', coerce=False)
56.0
>>> try_real('56.07')
56.07
>>> try_real(56.07)
56.07
>>> try_real(56.0)
56
>>> try_real(56.0, coerce=False)
56.0

try_forceint always returns an integer.

>>> from fastnumbers import try_forceint
>>> try_forceint('56')
56
>>> try_forceint('56.0')
56
>>> try_forceint('56.07')
56
>>> try_forceint(56.07)
56

Fast operations on lists and other iterables

Each of the try_* functions have a map option causes the function to accept an iterable of items to convert and returns a list. Using try_float as an example, the following are all functionally equivalent.

>>> from fastnumbers import try_float
>>> iterable = ["5", "4.5", "34567.6", "32"]
>>> try_float(iterable, map=list) == list(map(try_float, iterable))
True
>>> try_float(iterable, map=list) == [try_float(x) for x in iterable]
True
>>> try_float(iterable, map=list) == list(try_float(iterable, map=True))
True

The difference is that the map option is 2x the speed of the list comprehension method, and 1.5x the speed of the map method. The reason is that it avoids Python function call overhead on each iteration. Note that True causes the function to return an iterator, and list causes it to return a list. In practice the performance of these are similar (see Timing for raw data).

If you need to store your output in a numpy array, you can use try_array to do this conversion directly. This function has some additional handling for overflow that is not present in the other fastnumbers functions that may come in handy when dealing with numpy arrays.

>>> from fastnumbers import try_array
>>> import numpy as np
>>> iterable = ["5", "4.5", "34567.6", "32"]
>>> np.array_equal(np.array(try_float(iterable, map=list), dtype=np.float64), try_array(iterable))
True

You will see about a 2x speedup of doing this in one step over converting to a list then converting that list to an array.

About the on_fail option

The on_fail option is a way for you to do anything in the event that the given input cannot be converted to a number. It can

  • return given object as-is if set to fastnumbers.INPUT (this is the default)

  • raise a ValueError if set to fastnumbers.RAISE

  • return a default value if given any non-callable object

  • call a function with the given object if given a single-argument callable

Below are a couple of ideas to get you thinking.

NOTE:: There is also an on_type_error option that behaves the same as on_fail except that a) it is triggered when the given object is of an invalid type and b) the default value is fastnumbers.RAISE, not fastnumbers.INPUT.

>>> from fastnumbers import INPUT, RAISE, try_float
>>> # You want to convert strings that can be converted to numbers, but
>>> # leave the rest as strings. Use fastnumbers.INPUT (the default)
>>> try_float('45.6')
45.6
>>> try_float('invalid input')
'invalid input'
>>> try_float('invalid input', on_fail=INPUT)
'invalid input'
>>>
>>>
>>>
>>> # You want to convert any invalid string to NaN
>>> try_float('45.6', on_fail=float('nan'))
45.6
>>> try_float('invalid input', on_fail=float('nan'))
nan
>>>
>>>
>>>
>>> # Simple callable case, send the input through some function to generate a number.
>>> try_float('invalid input', on_fail=lambda x: float(x.count('i')))  # count the 'i's
3.0
>>>
>>>
>>>
>>> # Suppose we know that our input could either be a number, or if not
>>> # then we know we just have to strip off parens to get to the number
>>> # e.g. the input could be '45' or '(45)'. Also, suppose that if it
>>> # still cannot be converted to a number we want to raise an exception.
>>> def strip_parens_and_try_again(x):
...     return try_float(x.strip('()'), on_fail=RAISE)
...
>>> try_float('45', on_fail=strip_parens_and_try_again)
45.0
>>> try_float('(45)', on_fail=strip_parens_and_try_again)
45.0
>>> try_float('invalid input', on_fail=strip_parens_and_try_again) #doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
  ...
ValueError: invalid literal for float(): invalid input
>>>
>>>
>>>
>>> # Suppose that whenever an invalid input is given, it needs to be
>>> # logged and then a default value is returned.
>>> def log_and_default(x, log_method=print, default=0.0):
...     log_method("The input {!r} is not valid!".format(x))
...     return default
...
>>> try_float('45', on_fail=log_and_default)
45.0
>>> try_float('invalid input', on_fail=log_and_default)
The input 'invalid input' is not valid!
0.0
>>> try_float('invalid input', on_fail=lambda x: log_and_default(x, default=float('nan')))
The input 'invalid input' is not valid!
nan

Checking Functions

check_float will be used to demonstrate the functionality of the check_* functions. There is also the query_type function.

>>> from fastnumbers import check_float
>>> from fastnumbers import ALLOWED, DISALLOWED, NUMBER_ONLY, STRING_ONLY
>>> # Check that a string can be converted to a float
>>> check_float('56')
True
>>> check_float('56', strict=True)
False
>>> check_float('56.07')
True
>>> check_float('56.07 lb')
False
>>>
>>> # Check if a given number is a float
>>> check_float(56.07)
True
>>> check_float(56)
False
>>>
>>> # Specify if only strings or only numbers are allowed
>>> check_float(56.07, consider=STRING_ONLY)
False
>>> check_float('56.07', consider=NUMBER_ONLY)
False
>>>
>>> # Customize handling for nan or inf (see API for more details)
>>> check_float('nan')
False
>>> check_float('nan', nan=ALLOWED)
True
>>> check_float(float('nan'))
True
>>> check_float(float('nan'), nan=DISALLOWED)
False

check_int works the same as check_float, but for integers.

>>> from fastnumbers import check_int
>>> check_int('56')
True
>>> check_int(56)
True
>>> check_int('56.0')
False
>>> check_int(56.0)
False

check_real is very permissive - any float or integer is accepted.

>>> from fastnumbers import check_real
>>> check_real('56.0')
True
>>> check_real('56')
True
>>> check_real(56.0)
True
>>> check_real(56)
True

check_intlike checks if a number is “int-like”, if it has no fractional component.

>>> from fastnumbers import check_intlike
>>> check_intlike('56.0')
True
>>> check_intlike('56.7')
False
>>> check_intlike(56.0)
True
>>> check_intlike(56.7)
False

The query_type function can be used if you need to determine if a value is one of many types, rather than whether or not it is one specific type.

>>> from fastnumbers import query_type
>>> query_type('56.0')
<class 'float'>
>>> query_type('56')
<class 'int'>
>>> query_type(56.0)
<class 'float'>
>>> query_type(56)
<class 'int'>
>>> query_type(56.0, coerce=True)
<class 'int'>
>>> query_type('56.0', allowed_types=(float, int))
<class 'float'>
>>> query_type('hey')
<class 'str'>
>>> query_type('hey', allowed_types=(float, int))  # returns None

Drop-in Replacement Functions

PLEASE do not take it for granted that these functions will provide you with a speedup - they may not. Every platform, compiler, and data-set is different, and you should perform a timing test on your system with your data to evaluate if you will see a benefit. As you can see from the data linked in the Timing section, the amount of speedup you will get is particularly data-dependent. In general you will see a performance boost for floats (and this boost increases as the size of the float increases), but for integers it is largely dependent on the length of the integer. You will likely not see a performance boost if the input are already numbers instead of strings.

NOTE: in the below examples, we use from fastnumbers import int instead of import fastnumbers. This is because calling fastnumbers.int() is a bit slower than just int() because Python has to first find fastnumbers in your namespace, then find int in the fastnumbers namespace, instead of just finding int in your namespace - this will slow down the function call and defeat the purpose of using fastnumbers. If you do not want to actually shadow the built-in int function, you can do from fastnumbers import int as fn_int or something like that.

>>> # Use is identical to the built-in functions
>>> from fastnumbers import float, int
>>> float('10')
10.0
>>> int('10')
10
>>> float('bad input') #doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
  ...
ValueError: invalid literal for float(): bad input

real is provided to give a float or int depending on the fractional component of the input.

>>> from fastnumbers import real
>>> real('56.0')
56
>>> real('56.7')
56.7
>>> real('56.0', coerce=False)
56.0

Timing

Just how much faster is fastnumbers than a pure python implementation? Please look https://github.com/SethMMorton/fastnumbers/tree/main/profiling.

High-Level Algorithm

For integers, CPython goes to great lengths to ensure that your string input is converted to a number correctly and losslessly (you can prove this to yourself by examining the source code for integer conversions). This extra effort is only needed for integers that cannot fit into a 64-bit integer data type - for those that can, a naive algorithm of < 10 lines of C code is sufficient and significantly faster. fastnumbers uses a heuristic to determine if the input can be safely converted with the much faster naive algorithm, and if so it does so, falling back on the CPython implementation for longer input strings. Most real-world numbers pass the heuristic and so you should generally see improved performance with fastnumbers for integers.

For floats, fastnumbers utilizes the ultra-fast fast_float::from_chars function to convert strings representing floats into a C double both quickly and safely - the conversion provides the same accuracy as the CPython float conversion function but instead of scaling linearly with length of the input string it seems to have roughly constant performance. By completely bypassing the CPython converter we get significant performance gains with no penalty, so you should always see improved performance with fastnumbers for floats.

Installation

Use pip!

$ pip install fastnumbers

How to Run Tests

Please note that fastnumbers is NOT set-up to support python setup.py test.

The recommended way to run tests is with tox. Suppose you want to run tests for Python 3.8 - you can run tests by simply executing the following:

$ tox run -e py38

tox will create virtual a virtual environment for your tests and install all the needed testing requirements for you.

If you want to run testing on all supported Python versions you can simply execute

$ tox run

You can change the how much “random” input your tests will try with

# Run fewer tests with "random" input - much faster
$ tox run -- --hypothesis-profile fast

# Run more tests with "random" input - takes much longer but is more thorough
$ tox run -- --hypothesis-profile thorough

If you want to run the performce analysis yourself, you can execute

# This assumes Python 3.9 - adjust for the version you want to profile
$ tox run -e py39-prof

If you do not wish to use tox, you can install the testing dependencies with the dev-requirements.txt file and then run the tests manually using pytest.

$ pip install -r dev/requirements.txt
$ pytest

Author

Seth M. Morton

History

Please visit the changelog on GitHub or in the documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastnumbers-5.0.1.tar.gz (179.3 kB view details)

Uploaded Source

Built Distributions

fastnumbers-5.0.1-cp311-cp311-win_amd64.whl (96.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

fastnumbers-5.0.1-cp311-cp311-win32.whl (89.7 kB view details)

Uploaded CPython 3.11 Windows x86

fastnumbers-5.0.1-cp311-cp311-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

fastnumbers-5.0.1-cp311-cp311-musllinux_1_1_i686.whl (2.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

fastnumbers-5.0.1-cp311-cp311-musllinux_1_1_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

fastnumbers-5.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fastnumbers-5.0.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

fastnumbers-5.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

fastnumbers-5.0.1-cp311-cp311-macosx_11_0_arm64.whl (150.3 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fastnumbers-5.0.1-cp311-cp311-macosx_10_9_x86_64.whl (147.6 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

fastnumbers-5.0.1-cp311-cp311-macosx_10_9_universal2.whl (288.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

fastnumbers-5.0.1-cp310-cp310-win_amd64.whl (96.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

fastnumbers-5.0.1-cp310-cp310-win32.whl (89.7 kB view details)

Uploaded CPython 3.10 Windows x86

fastnumbers-5.0.1-cp310-cp310-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

fastnumbers-5.0.1-cp310-cp310-musllinux_1_1_i686.whl (2.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

fastnumbers-5.0.1-cp310-cp310-musllinux_1_1_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

fastnumbers-5.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fastnumbers-5.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

fastnumbers-5.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

fastnumbers-5.0.1-cp310-cp310-macosx_11_0_arm64.whl (150.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fastnumbers-5.0.1-cp310-cp310-macosx_10_9_x86_64.whl (148.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

fastnumbers-5.0.1-cp310-cp310-macosx_10_9_universal2.whl (289.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

fastnumbers-5.0.1-cp39-cp39-win_amd64.whl (96.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

fastnumbers-5.0.1-cp39-cp39-win32.whl (89.7 kB view details)

Uploaded CPython 3.9 Windows x86

fastnumbers-5.0.1-cp39-cp39-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

fastnumbers-5.0.1-cp39-cp39-musllinux_1_1_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

fastnumbers-5.0.1-cp39-cp39-musllinux_1_1_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

fastnumbers-5.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fastnumbers-5.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

fastnumbers-5.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

fastnumbers-5.0.1-cp39-cp39-macosx_11_0_arm64.whl (150.6 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fastnumbers-5.0.1-cp39-cp39-macosx_10_9_x86_64.whl (148.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

fastnumbers-5.0.1-cp39-cp39-macosx_10_9_universal2.whl (289.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

fastnumbers-5.0.1-cp38-cp38-win_amd64.whl (96.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

fastnumbers-5.0.1-cp38-cp38-win32.whl (89.7 kB view details)

Uploaded CPython 3.8 Windows x86

fastnumbers-5.0.1-cp38-cp38-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

fastnumbers-5.0.1-cp38-cp38-musllinux_1_1_i686.whl (2.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

fastnumbers-5.0.1-cp38-cp38-musllinux_1_1_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

fastnumbers-5.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

fastnumbers-5.0.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

fastnumbers-5.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

fastnumbers-5.0.1-cp38-cp38-macosx_11_0_arm64.whl (150.6 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

fastnumbers-5.0.1-cp38-cp38-macosx_10_9_x86_64.whl (148.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

fastnumbers-5.0.1-cp38-cp38-macosx_10_9_universal2.whl (289.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

fastnumbers-5.0.1-cp37-cp37m-win_amd64.whl (96.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

fastnumbers-5.0.1-cp37-cp37m-win32.whl (89.0 kB view details)

Uploaded CPython 3.7m Windows x86

fastnumbers-5.0.1-cp37-cp37m-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

fastnumbers-5.0.1-cp37-cp37m-musllinux_1_1_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

fastnumbers-5.0.1-cp37-cp37m-musllinux_1_1_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

fastnumbers-5.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

fastnumbers-5.0.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

fastnumbers-5.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

fastnumbers-5.0.1-cp37-cp37m-macosx_10_9_x86_64.whl (147.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file fastnumbers-5.0.1.tar.gz.

File metadata

  • Download URL: fastnumbers-5.0.1.tar.gz
  • Upload date:
  • Size: 179.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for fastnumbers-5.0.1.tar.gz
Algorithm Hash digest
SHA256 9e4fd92cdf263a8e0865af19c40ae9df45a9bc0eb5e22fefea871140e7e0262f
MD5 9702e2b4cc4f1ec5ee1d774f68afd1ae
BLAKE2b-256 25997477b06000f97c886ba7d2b61130116e5794bc74012a499dfa3ff3dbc767

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e9819f2ca8a8c617ed09e561436d8127c55ab96a55e61f8ddfd9716086074567
MD5 78bb41478c735eef800709d74f649394
BLAKE2b-256 f7baae128a3cff5df62f3c2a9a2edd91a9a70fc3abaea6029655fe07fcf57e84

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: fastnumbers-5.0.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 89.7 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for fastnumbers-5.0.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 d5901255de5193e398658fa1ad0a5de565c3f5f2dceaa92a8c1a6e21734bbaba
MD5 3380a44d3815542a270d29cd2e1db77b
BLAKE2b-256 ff46962e8e57668954b500c7ef6c745a3ad62fede53fea5045a49aea3d11d36f

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 55cc4021fc77cf3caecaafcb0909e953d59a2f113dba049013deb02036698ee5
MD5 3e1166fc628c01dcc09a5859a8886d30
BLAKE2b-256 0acb7cb444ec08fda9057cf371eef7e2daac0c30ecc22983fac3e54c25cf483b

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ebd2649c9b19cce35b1fb12280d5b046b51977857cde355cab4ce5e2599e512f
MD5 a3f81b1590a171aaaba4e694115db1a0
BLAKE2b-256 00ca5f61b37456288ea87d7b6e5d962d6cefdbe448220a0dbade0edcc736774a

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e10ad3073e465b9c727c7e0332083979669ac93ba97a629d4fadb3455bcd5437
MD5 af5b6d8d3cd9837358c52aa6faf6034e
BLAKE2b-256 bbc3128437704ee6a28db7e7d87f45b8b6894a95c6c88cba924c34544152b2bc

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 13f6694c07bcf8339543f7846cd6c94c9028b5dc572952c6bb5b08875bf5fef6
MD5 494dafd79a21222583aeb2f8d367acbe
BLAKE2b-256 737fb6cc2d8f6887e2d221efa5cf714229d1747b42b2df7a507406ce58135e3c

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ac8fdd2da47335d386313a17703e0a438f51220a058b036e848db6ea4dbf45b3
MD5 344bf795d5c3606d90f36585e264044f
BLAKE2b-256 f2f778316534c3e90292b03829ec46f63efa7124c7164f07f9e97b1f5cd62136

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0f80323361ef2922cdc54b15c2d573fe596612c027c011ed0711fb475264f1bd
MD5 0563c60b3fea2ac406f997bcf1a90c04
BLAKE2b-256 480fe6b08926e196d37224a9a9906f5381d04e805873b5409a2ec3cba27c71cc

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5346540b2d9b38a215a1e16acb8b34cbfb6fcfa8ae61de8e0b47bffb3eab6803
MD5 f23c6959653bfb6f66bf103b5e37a2c4
BLAKE2b-256 26bb7281650d5cc114e40f608268fa584ab62c6d887db2ec896adb406f64dabf

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ab911f3f13a85f404db98bf4cc01a94b5fc2f1685cf8b731bf4c3b1a88e2c122
MD5 42d83a0e5a57ecd5896819b51f8fbd5b
BLAKE2b-256 c06927f9945451b214799a2463404525addde01f2752f9447044a9cb985dc498

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e5aec9c0ce6960eeed667f7cac212528abc6d444b68b04afa6d688cee32803f1
MD5 7a28a342e806224ce1f6cd7a1f99e3fb
BLAKE2b-256 f03ca4e5bacd2e85bfd6b2b4e41dcc6ededecea91eacd6dceebf68cfafb6c36c

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 42ae8a54861732bb6ccb930dc6a2e1a6d7d066838dec59c75fcd9de6f0fdaad2
MD5 b717984c0edb620ae9e319d16d17735d
BLAKE2b-256 b3b27ba9bbe6d0aa5667f477a45bf9c80eff4199686b98fa274fc128fe64e82b

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: fastnumbers-5.0.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 89.7 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for fastnumbers-5.0.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 18c1febac6d4b24a2c82f64746e6bb5a0623d66ab04061a2466794a448a9cfb7
MD5 9b6aa597a48da00f43b17fa439ad39a1
BLAKE2b-256 2f27d99b46732e6c0855fe8c95633f200764765f56f16de1946dfc64a6ed910b

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ae5cdafde8f19ad139668a8eb67f3904c23949230ecfe7ac77fa395b6fa1c129
MD5 885ac8368971426610afc6f809563bac
BLAKE2b-256 30d5a181ce62a8cd05143bbc8f49383f83c207071602c4d4a3d3434c046a3fe9

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6592804c8fda78465b8d5926519b5f7ab4cadeb155cf7b3d58220a407f023d3a
MD5 122307a84f7d029a4dc169a753759099
BLAKE2b-256 39430a2d6fba348d573888fe440b3b4ef100a764f0e9918357830462b80a33c9

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 a338e6bc11e0563b099bb18af2b6a95b8ac5672b09feabd5c59215f8833dd792
MD5 ed24a274ce403ebf1f6df53208e03da8
BLAKE2b-256 0c346207f7f7d532c4991b67fb4f023b77707882e3b577033bff0f1aaa9928a2

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 51ee7c24bf0664023458e5278db9f26693c702f215e9bd555088f6937d5b30fa
MD5 0874e1dbd487226e3b37e70e62dcb13d
BLAKE2b-256 f5eaabb0c68791f749ef803667e17eefa29c5ac6d9166a7a89a123aece66c965

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 226c90052de1244a528b436778319c8fb0993c2ab3c82b0fcd98880482808923
MD5 c0003a28620a8fc52dba8bec5d1cc551
BLAKE2b-256 f7346e83f696f0731bffacd8e921a93adf600eacf6e8771100f6b4e2b0ef6953

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6b42e54d5e961d4d881e8ee44e6136061b32b8473922fab472f41c9f3b27f9f6
MD5 9d2ae3dd9554904c6d7c5374fa74a258
BLAKE2b-256 5d9accab2eea3a6f2d04a266a5aa855cdeba5aa77ead795c06c312ec5d760cd1

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fc1685317313b25a68296c470215f08f590e8ea656986cab10cedecb855da50c
MD5 3383b3e14a40f41de11ed0a5bce0009e
BLAKE2b-256 50d7e61438d4d075eb5cc3cc31f898d68449661c56841b399eead71aa6b3b53a

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2453c5d526e2886bae53dfcfc3c604c9a437480dc4959aa102a44cbd041b8ab5
MD5 ab5e9a2b4858e1bb1374327130c36aa3
BLAKE2b-256 31a145861ba427c230582d3921a0dafaf62c8b4f325868d2c1af16cf3ba2e33d

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 dd05059e779802d9810e044b749ca5bbc85773c8c6fbcb2c9c0a07de703125ad
MD5 0776e2878827bf05df2dd74c068b632e
BLAKE2b-256 9966207401ab752cd7bb0b5bd2985bbccfd84242f879f5210660b42b3db7addd

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 93a660675e8a92bd1117026b7646d9c5d448edfe412b870cdc67ad43762ddc4f
MD5 ce0fa5007bbb45a01e83300ad4606c8e
BLAKE2b-256 f2a58ed678a54503b6c29ed61a2a88748afe9b913235de4b330ed1ab4cdb04b4

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: fastnumbers-5.0.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 89.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for fastnumbers-5.0.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 4779c0d9e1685c02f5a1a060fb53fa2043fead5b656794609cd1d7a5619051fc
MD5 8bc4429a170e9544ef2d600f5943ec62
BLAKE2b-256 ab75a8dc08ba29fabafdac7f3172ef2be2c861b4a8812d1a9c2a8a02d13d3810

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 75cbfe1c782d9818a53b38a3aaaced24c7acee429c684f6b364307c266c0d36c
MD5 f1cf99ddc9f1b28f1cead2b8c54d9f0d
BLAKE2b-256 adba407e2186ed3a5af7c51c4774564644038bf7fad4769ffc0b5dfaea49c727

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 24957a211a7f70f65ed5f83d5e9babed7cd2f3de6ba565496a802e23b1dadccc
MD5 5315e53abc508bca6ce928c1cae22b47
BLAKE2b-256 78e105a909cb54ab8355f3198f9ed0d9501e8220a596c06b3bd405ff571c45bd

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 7f8764a39b251ac7045bbda9f14cf8d32500e5d02db5c1b724d0ec751305fd65
MD5 0b6fd74b30fb6ce4eec8a169ba7bb4bf
BLAKE2b-256 8fd4d01d5cf2c548c6018d6331a96901db8c4c8dedbd0b40723f982913e420f0

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fa739f0290c6694cabe65b72c9c194356259d12ad23c158eb37e3f675849d24a
MD5 79f906fafcd11eb4b2702eac8141dc90
BLAKE2b-256 031f0dc1cbebd7f7d97575de97b8fbace28a58d69d3c1c2cae8c797cc23c2a97

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0d7573c455a12fe4cd210a57b1eb61bacd5779888f8b66e4498b81d9a83e64a9
MD5 ac7decfbbd3fd720f82265052117697f
BLAKE2b-256 2fd68820afdbc1ed64a10084493682e5ea0cff7c583d5d09a70713d04d074e7e

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 55dcf59197f3c4910e9e1e7413e36020aebec5d5b0f4f3cc2860df3cd174df1d
MD5 a181538c700f532e998f4b69c054dc34
BLAKE2b-256 1b0e052bdd7ed1c1207c02920904ac6aa72acc9dead47b3a279e4b6f570f539a

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 959834ecb1bc7f2b5a3aeec4d5b2222386fef87711cf7302ff8c1885545eb713
MD5 30efeedd97a523993d1ec48dfc97f5d7
BLAKE2b-256 7b47e5101dcd6301e43ca2fe4b899d09c5ded098b0641b6dbd7ac932d8f4f06a

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0b5ad513fbfa1fac04eaf568fecb1e7d5b2c63faac4db7bffecebe2d6efd1921
MD5 20491c43b0a4430ec1ea1272bd61748e
BLAKE2b-256 3812f065e92e8039e064a1712593b2e7b2e793718556efa49b1270cf254dd4e0

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e19753d81526ab53e301e3ca527a4b8971effbeb6cad4e9a7745608594ca9185
MD5 395775fdd6e0c1008f3f11d047de636d
BLAKE2b-256 c8b9c5f1e8449040fedb82363cdb04ff352b6668d56037fb6091f9102edb82ee

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4fb732809df8de669f21fbbad7a911840733c902c005fae2876b6fd756386b2e
MD5 dfce13c18cf60482a159fdb2ab75a9f2
BLAKE2b-256 198dbe18ac8171c0adc43ca47f774defe89f57ee24dff936b4be98563595220b

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: fastnumbers-5.0.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 89.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for fastnumbers-5.0.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 8d0d71616ea1a55ac03fd42533c9104d56506d0ea6d938cd8a87aeb70e51bc9c
MD5 f21571a89093c0cace508c4fe4defa4e
BLAKE2b-256 9ff3dcaa22bfa9cb225d6e7963c0aeff0d3fc5583f79c82d5ab7d32624dac5f3

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 de25092c66303e5c2d0b40931c7ea8526b6fd67b79438f021c269bfb35d770cc
MD5 6567667ae5dd6e82d7c959e5336d67c7
BLAKE2b-256 35ba14758fc8986f1f40f859845b54dceedb0d1e04fddcab927ca3e6c3c5eeec

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 fbeda59e79224679644922b856c6db1d474489be5db2d6959f7fb6c8d5813285
MD5 ed89fe2ec7c2d3cf2c2649e4e78d22ae
BLAKE2b-256 92946f8d3c78cf95b485208d59fe62e1c049e8f02b15db5b203d87c94592d84f

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 fe57fd61e8dc7a7b6925e6ee30ad4ce266c5a8d127109c5cec8f7b6db535872c
MD5 b239f0d65fe34d15c0c10b0d741e46d1
BLAKE2b-256 37a72a4a21c6cc4ac79d4194dafbb8eb286bf70b63656865a195fb7ebaa38562

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f6bae1c410a989388562bf0927968c8d0dbc20aeae30c81308c704d5b6fdc39b
MD5 d8665322afb33836bb871f5db68f941f
BLAKE2b-256 5548366ee4df90efd50dd144d6a253f31cff7f08ded478092703825a168bd3aa

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 31d366a1cfe81a2cd9839f696b2f26db8b9211d1bc637c7d991940bf1688c54e
MD5 b9c276044d72e0d6cc254ecc5bee5330
BLAKE2b-256 5aeac114f496b4a5c07678b0a32f0dea6c2151c9442720c980c57800eb885796

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0c00fb3821741ee9c887ab7c151b56ba5de508a250b6fdd1ecdb6a3b3847a95a
MD5 3c07d2fa25f359d799eee252cf93c97f
BLAKE2b-256 ce5ca19dc3a351222164a9b8747e7e77548549bbec3117a63c00c11a3e283662

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2b02d8954281e8236539436f6f2f91c28a182bbd2d3393579335b1e8db025cf7
MD5 3443af1db8b3c5b37c5445e037001198
BLAKE2b-256 149f648792e9eb57e588bd83e775d7b02452add5ed92768f726dbb2ae234910d

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0b311857dac6c16dae63affe02d541ec32583583654836dfca88786e82c39f2a
MD5 585670e829d86fec544a50dc251e74ed
BLAKE2b-256 86cdd9068d4de5a2db1d0f2a97bf39d2118bc8af5122acadf41950c41492431c

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7963204a541cbaae1cd4c5b3a793d1449e276b393c8b83d0e13f5688f127dd34
MD5 cecf3d4d2f403a25f48dc0da2205775a
BLAKE2b-256 873e5b10c5b440e3744cd17518202eaf0c641f029c416187c8ee3ff59ff381ab

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 0f3444bc16b9d2906f1680c75025deaf1b914a8a9de767853304150a225e8eb7
MD5 1f6db034ed533528adb1fa3217304b0a
BLAKE2b-256 d701686afeefb01cb8b5f13e7dbba7aefd9a0d344ecea9850441ef7db000cb29

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: fastnumbers-5.0.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 89.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for fastnumbers-5.0.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 96a8820208807423c6eb442067207e8f1e30e59dbb0f24b426998650d3bd7ed4
MD5 f8eff7622a66a8029ab2c53cd0017b7c
BLAKE2b-256 ba5af2ca591a3b6ab7116fd39760f1cb60eebd7fc3498c2f0918bbe993ce5946

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9c3477f6623365a9eaccd8cf855c3e11084d1261f9e6811abba435437ad23f39
MD5 e6b6d18bda6be127b1ed8b51dffceccf
BLAKE2b-256 c6d0762c763421276425e694fbda4ac5a47d7c053a3b19c5aec098a909d431f4

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8b7f088b72c17d6ac78ab79d3d07e6493276ce53d2026c0753ea92369efad1cf
MD5 269932f0eb6824520ce1edca46ce213a
BLAKE2b-256 bc05e72d7320521bbda0f70c7cdd7911d1d053a1b27e53d6c6caf3616cd51cdd

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f957f33a8040ab8f42f960dfe727d97944703eaacd05ad3255770b2b2b6fb4fb
MD5 7aef7b2e364ae0e27098aa97f8c39613
BLAKE2b-256 dc24ff3212a27c92d738ebc29c9b47373e39ba8ca9be57f498a734cd93233096

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0aa5b6ceca4126b1ee9be94ddf071590dc95f4f3874fbcd77b08973e306c9c24
MD5 aca03c48c5564d3b8d3892af4f4a73e9
BLAKE2b-256 ff959c30afebef16d7c7629005bc6e89995603e74590c614ccf6bbef43466220

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 66f490e8c845d98ef2e2c21ddc354c40ce3af80bbe83493ae69030baffefc5e3
MD5 c9ef5356dd7be3ca5b975318f0aef399
BLAKE2b-256 b6a1f41f74dbe2d4753e155ce47a594a5617a4769db37b5c7984c3c278da59d5

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ff8361e94e34695249420b15ed975fedadf569d6ec877836acfa7b432fcd62ed
MD5 d8bf0127debb7e5a1723b98a6490b0a5
BLAKE2b-256 5a5bde0f28666180fbbfe1ffb5293561cea23b9b233722ab64793c7c482b37de

See more details on using hashes here.

File details

Details for the file fastnumbers-5.0.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.0.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 71a635f078cf8a5092667bc8e32c51c6544f40a60db32ca94d40a256e0b7675f
MD5 3ea26a377f9dc3f06fcc4f6578a0bcdb
BLAKE2b-256 955cd6f1a5ee87764d6689fa84905df8e74612baea11a570926a38df15ccf2d3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page