Skip to main content

Python support for Parquet file format

Project description

https://github.com/dask/fastparquet/actions/workflows/main.yaml/badge.svg https://readthedocs.org/projects/fastparquet/badge/?version=latest

fastparquet is a python implementation of the parquet format, aiming integrate into python-based big data work-flows. It is used implicitly by the projects Dask, Pandas and intake-parquet.

We offer a high degree of support for the features of the parquet format, and very competitive performance, in a small install size and codebase.

Details of this project, how to use it and comparisons to other work can be found in the documentation.

Requirements

(all development is against recent versions in the default anaconda channels and/or conda-forge)

Required:

  • numpy

  • pandas

  • cython >= 0.29.23 (if building from pyx files)

  • cramjam

  • fsspec

Supported compression algorithms:

  • Available by default:

    • gzip

    • snappy

    • brotli

    • lz4

    • zstandard

  • Optionally supported

Installation

Install using conda, to get the latest compiled version:

conda install -c conda-forge fastparquet

or install from PyPI:

pip install fastparquet

You may wish to install numpy first, to help pip’s resolver. This may install an appropriate wheel, or compile from source. For the latter, you will need a suitable C compiler toolchain on your system.

You can also install latest version from github:

pip install git+https://github.com/dask/fastparquet

in which case you should also have cython to be able to rebuild the C files.

Usage

Please refer to the documentation.

Reading

from fastparquet import ParquetFile
pf = ParquetFile('myfile.parq')
df = pf.to_pandas()
df2 = pf.to_pandas(['col1', 'col2'], categories=['col1'])

You may specify which columns to load, which of those to keep as categoricals (if the data uses dictionary encoding). The file-path can be a single file, a metadata file pointing to other data files, or a directory (tree) containing data files. The latter is what is typically output by hive/spark.

Writing

from fastparquet import write
write('outfile.parq', df)
write('outfile2.parq', df, row_group_offsets=[0, 10000, 20000],
      compression='GZIP', file_scheme='hive')

The default is to produce a single output file with a single row-group (i.e., logical segment) and no compression. At the moment, only simple data-types and plain encoding are supported, so expect performance to be similar to numpy.savez.

History

This project forked in October 2016 from parquet-python, which was not designed for vectorised loading of big data or parallel access.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastparquet-2023.1.0.tar.gz (392.3 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

fastparquet-2023.1.0-cp311-cp311-win_amd64.whl (614.9 kB view details)

Uploaded CPython 3.11Windows x86-64

fastparquet-2023.1.0-cp311-cp311-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

fastparquet-2023.1.0-cp311-cp311-musllinux_1_1_i686.whl (1.5 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ i686

fastparquet-2023.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

fastparquet-2023.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

fastparquet-2023.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

fastparquet-2023.1.0-cp311-cp311-macosx_11_0_arm64.whl (579.0 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

fastparquet-2023.1.0-cp311-cp311-macosx_10_9_universal2.whl (783.7 kB view details)

Uploaded CPython 3.11macOS 10.9+ universal2 (ARM64, x86-64)

fastparquet-2023.1.0-cp310-cp310-win_amd64.whl (616.9 kB view details)

Uploaded CPython 3.10Windows x86-64

fastparquet-2023.1.0-cp310-cp310-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

fastparquet-2023.1.0-cp310-cp310-musllinux_1_1_i686.whl (1.5 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ i686

fastparquet-2023.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

fastparquet-2023.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

fastparquet-2023.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

fastparquet-2023.1.0-cp310-cp310-macosx_11_0_arm64.whl (582.8 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

fastparquet-2023.1.0-cp310-cp310-macosx_10_9_universal2.whl (790.4 kB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)

fastparquet-2023.1.0-cp39-cp39-win_amd64.whl (619.1 kB view details)

Uploaded CPython 3.9Windows x86-64

fastparquet-2023.1.0-cp39-cp39-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

fastparquet-2023.1.0-cp39-cp39-musllinux_1_1_i686.whl (1.5 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ i686

fastparquet-2023.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

fastparquet-2023.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

fastparquet-2023.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

fastparquet-2023.1.0-cp39-cp39-macosx_11_0_arm64.whl (583.0 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

fastparquet-2023.1.0-cp39-cp39-macosx_10_9_universal2.whl (792.5 kB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)

fastparquet-2023.1.0-cp38-cp38-win_amd64.whl (629.0 kB view details)

Uploaded CPython 3.8Windows x86-64

fastparquet-2023.1.0-cp38-cp38-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ x86-64

fastparquet-2023.1.0-cp38-cp38-musllinux_1_1_i686.whl (1.6 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ i686

fastparquet-2023.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

fastparquet-2023.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

fastparquet-2023.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

fastparquet-2023.1.0-cp38-cp38-macosx_11_0_arm64.whl (589.0 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

fastparquet-2023.1.0-cp38-cp38-macosx_10_9_universal2.whl (794.4 kB view details)

Uploaded CPython 3.8macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file fastparquet-2023.1.0.tar.gz.

File metadata

  • Download URL: fastparquet-2023.1.0.tar.gz
  • Upload date:
  • Size: 392.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for fastparquet-2023.1.0.tar.gz
Algorithm Hash digest
SHA256 92252538823da2bf958d2f2edd14e3864ae296d28f5be24e07eb685b4b08bed2
MD5 bec431ee3b18c0efbc6312fc5d5eca36
BLAKE2b-256 a46adcb4ae7d42d508ff88266c24a82762167d46885cdf4ccdf522b8de5c9b99

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e873286445e0850a5f044c71b9c3f55279a1fbd7b7e39590c866f24de5ce850f
MD5 1ff811f18d9b81eb5b81c0010324dec3
BLAKE2b-256 85c11121eef85efa6258dbb1d51df944894e810994ad500de62fab0a7291fd49

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c40fe744c478c64105dae97b1bdf10709c5f730f12fbeaa719a6714513c4eb7e
MD5 8e7437f5db7f323afa8b35f226cb76da
BLAKE2b-256 aed16dc0cc2ede895033cd87a522edd920d052844936c6e6852d85ee83481251

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 02e0619a86e9e328373cbfb22fceb8e4054b6d32badffb565ff21d7a3566ed38
MD5 908ea01817dbdd8609488dd927a6c510
BLAKE2b-256 25349a2e0e88b72ae47526b88bca11b21cd995f8c070c4d6bab323f74365420e

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 98065a55bfbedddcc237a791109ea9b3ac3e8008318e4c8e7b39227219494e4b
MD5 5f3884cd3533de6e938ded08c4a02ddd
BLAKE2b-256 577d9c13b9a67e337fb8b5b4e2051641bdb13e926bcfd318d181b97553ca208a

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4ebcaa49b57d4f11112160e80f3feab1a36af68072e415672da985930c66c3a2
MD5 928bf0bbf78281aa4fc85218b007aa1d
BLAKE2b-256 49663740dd7582dca2f271f1c34b50aec6b3e75f6e4b36a51e79b7ca27f87437

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0db7578d62945e4b9b6e983afc0f15fe9d82f47f76ebc3cdbd713c5fadd4ea84
MD5 fe4b05730dfb7a3dc03f9856fb9abb1a
BLAKE2b-256 f6fe5bab4c32a55831eb84f0dae22f94d26150c6c4e393b075f59158b64f9e9d

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cec14b87d5f721ba85e0fc0797a9adfb751d8e501863b5c587da09c2e65f2095
MD5 df29e3dc8254de9382b4a44355afc9fe
BLAKE2b-256 7870424e5ac86f57c37a60069d29b41c67942f6d4656de08246008b889be22dc

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 cb3c6406e086db3bf5835a62e46626111928e50bad5bfe56e63d40d293303be1
MD5 c7910c21d4c48167a593d7f92a057a92
BLAKE2b-256 5b18e7aba247e1481d670697d087631b3d27493489a13502bf5f18c293193066

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a104fede9b113e079a9e480242de809b0eacb95d718d20c3a9e14a65cffd4031
MD5 997581664df55c40f599878284f29277
BLAKE2b-256 c2a091e3142725f4aa0aac9c84bcf6f335e0ca1e4939da608b63e932f3db61cb

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fafd22c2a799ae9f3fcc6c1763d2480da3d47199beb6c8667b04d688a5507905
MD5 134580c82160eb72d5a6195201302737
BLAKE2b-256 1a0c1dc5cf3c330407f731fadf9f57ce4480fab42d6475e4e3b6b4093118dd5e

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 dea4af358ff2b55101d7708e9309283ec6dacd99d42b7060d79d5c1227bfa079
MD5 53437cb70e5dc328149e00ea5d1dcc74
BLAKE2b-256 dc5545590ce8841f30d09bcde7e6a743f33d70404f7b3e9a8d02a4bf6acd16cc

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 993079d95120ab234b7bfae200c3b7f56b16df4e284c62353a466dbfce951d23
MD5 cbc85365750e804bdb4ab5ed7b1a19e6
BLAKE2b-256 3421bc9b1ddec23e8393f50ddeb8d5dc991867c342b75a34c436bf59240bf020

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c00c47cce430204f4e7c007f84e420feada5676a6e752e093ca039cab5fa7370
MD5 6152fe3bb34b5f454889d03276a0d4ba
BLAKE2b-256 198558404653154672486730e229aecb266d96dc19fbb8507be0dd0af8d38c4c

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 74ebaff8f4f7922f44953161770c44a88b61dccd3cc11393f20856e34c3cf05c
MD5 8dc9ac7ccbd499174a5d54c1029dd068
BLAKE2b-256 09110c990b6018c8354c86fe9508a9110790cd3e0e67ba6f7e392f1b38715b5c

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3bcf1e969a42f8dabedca2cb255e7649d0725eafebf1e897450d84af504a5c70
MD5 9a6760eb54f5e30d9442849aee3e3f45
BLAKE2b-256 676ed372358bb20901c82ff546ea1449c9e6e034552c8f93d0b73d527ec034e3

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b8256c56bea62d43fd26307f68fd2ad281a1b21478b64a94bb94a01681a97583
MD5 7fc27e65234dd4f63065f2260113d03c
BLAKE2b-256 50de0aba2473e4c9d0a79920d696b26b3c73edf09b0fb0c46f5ac88021d0f43a

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 11adc51b17af433db8486b9be959c806034d44184e073249bd3285db85dc768e
MD5 c2599ffca0141dbe2d4056738b562e8b
BLAKE2b-256 7c410bcacc9f66060f94e9a382726ce73dea074327f6a5fcda75479954df0dc3

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 851fa21b1df421d8acadfd10025d7721c46c2182d4a64cef9a3811fa4a25a2eb
MD5 109dead8bd0ec69956c477493da5a80a
BLAKE2b-256 5808040ce055f4857a2fbbe8f2ce1ceecd975751f09df8cc8efa5f973bc14f65

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8fdfc1adcbc0ea1d05f9ac3576cf12732189c54e4b1c9d38da990dc36d9cc348
MD5 c62b3345176197a8caa8352607537d94
BLAKE2b-256 9af0c7b5a7c9ad52ddd281b7c27fa3ac7f840a5c476a19529282a075382b0ed0

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 09e2bcca0d95867b0364637a02d032844a496a47c2a2926e007a126e2bc25f55
MD5 2eb5f5c66033224ef7ff95808ca991ba
BLAKE2b-256 556e100b64a9ef61b17486f41249f8a03341a1e649f7b7a9bec2ec61cee98689

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1096fdebb87a9630b69bd7c68185783a337d01c1cd24916b1489ecb82b55cefb
MD5 a29d420338e57d2dc0bb4e6202c8b0b9
BLAKE2b-256 13bcdd198efd89cc93fe88bc13b8311b893abee3338ce43f4d40f559a9e16b83

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 201b05ececa2e2e607230039cea6f9e0027837e8e273c8ad83886f10699bc9c9
MD5 88ae64d06f45b1b816fac885ee4eb447
BLAKE2b-256 091d3ac895547d35913ca415c590e5e49b09f3c327acb12aeecf1a6f0937e477

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 97b978b90037d312d673dfd2e2c17cca85c692eaa9373f44856b1d5ed48a8cec
MD5 34037b6348e16f25353e984d524561b1
BLAKE2b-256 7424664687395c2e9f193103445763548da1c099ea8848d36c98373763e98793

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3feb1758b7b746e92d7aef64a013a0402a5919ff0147803276bc40e102141815
MD5 464fcaf4b63ffa2055915c449a057219
BLAKE2b-256 094f988d44a910a6386f92d3c4b338e2ce83fdac0d8a09806025a1600fcaf016

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 76dd48cb568c4596baded551251f870a3690a43893e29653baf26062549b82b3
MD5 7f01d7d366faf48ea5012a107a56714b
BLAKE2b-256 278d78cb48b493b52802619774177500ab3efe2e21afe73943365bc5d7bab31a

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c3a1ae4dbd079bc4b195249a0791a187c45b9b1802af947167c8d76a01cd8a79
MD5 227c32c3687a85c1a5100c3c6a85ecc2
BLAKE2b-256 4819f77aa6e385bd0334b8c7813a34b370e0802046e2be74a0a631c095a639c1

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 3d138a35979d72e4e2e1c06a6f275ea8b8885d1484e791fa7ad148af3aca8878
MD5 19d644b9a5d6a6e0f6c936b9e215308d
BLAKE2b-256 0182f763c8b962e34afe8447938d57d2dddd58704bc34bb098f7a39bc3d01016

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 00347f09a060852ce4330ce678c638977faf6fdb5c29caf89ad5651e0f0d7621
MD5 952bcba2a477e4f52b6ec2d005d34555
BLAKE2b-256 1d57ca4b91822829ccd93b8db8a5db75183aed871e0291d8612b8f3fdf2af230

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 568406db0c7fc37179e468503221e526a4945e553d145fbf1f6344b5b3a8c8e6
MD5 bbacc8b5c4c7e52836c4ed002ba4d7c8
BLAKE2b-256 d73d27121152560920ae42c63f3f4c596680c6574464e467b86a98e3c3775442

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5efcb6e0280fe8e103e8a5f6bf4a5ecd32915d3f9959a4e85f64661c7cbecede
MD5 a2a60570b966bf8c2949b9e9483dc4cb
BLAKE2b-256 e98a6f7198406e2f7838ecbe92872190f4e9d419598f9002a4bfe94c12346ccb

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fc6af1f2b2f9c29f1e61097fa7a8adcbf568815dea787ed2d2590d1ec8467826
MD5 4af3f8cf0a039c7967826cd0ab9b93a6
BLAKE2b-256 cf84c382cb188de46d88841a6e56f86d9436dde6804967fefa224def781c3d4c

See more details on using hashes here.

File details

Details for the file fastparquet-2023.1.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastparquet-2023.1.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 72fcd440472a4acfda2ab2007c2c23de37bce33ad4c609ab095aeb00012e699c
MD5 87874296f90b9e1c36b2877b47f28602
BLAKE2b-256 07df773ebeb49765b61732182ffecd8e3841eac2f975fb86aa6f57b169d6f939

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page