Skip to main content

No project description provided

Project description

FBGEMM_GPU

FBGEMM_GPU-CPU CI FBGEMM_GPU-CUDA CI FBGEMM_GPU-ROCm CI

FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance PyTorch GPU operator libraries for training and inference. The library provides efficient table batched embedding bag, data layout transformation, and quantization supports.

FBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch packages (2.1+) that are built against those CUDA versions.

See the full Documentation for more information on building, installing, and developing with FBGEMM_GPU, as well as the most up-to-date support matrix for this library.

Join the FBGEMM_GPU Community

For questions, support, news updates, or feature requests, please feel free to:

For contributions, please see the CONTRIBUTING file for ways to help out.

License

FBGEMM_GPU is BSD licensed, as found in the LICENSE file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

fbgemm_gpu_genai-1.2.0-cp313-cp313-manylinux_2_28_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ x86-64

fbgemm_gpu_genai-1.2.0-cp312-cp312-manylinux_2_28_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ x86-64

fbgemm_gpu_genai-1.2.0-cp311-cp311-manylinux_2_28_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ x86-64

fbgemm_gpu_genai-1.2.0-cp310-cp310-manylinux_2_28_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ x86-64

fbgemm_gpu_genai-1.2.0-cp39-cp39-manylinux_2_28_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ x86-64

File details

Details for the file fbgemm_gpu_genai-1.2.0-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_genai-1.2.0-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d2679928a2cd2db17cc77cb37937517987b2c293a4d1f216bedbdbf895e5cd7b
MD5 a7e067fb1ed0f80fbc2cc0267d1c1e84
BLAKE2b-256 3153444c413ca5bb92c81d8007444e23689297674c54bc6cfa9b7085fad1b439

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_genai-1.2.0-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_genai-1.2.0-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 807ef5b5448354ff8e0237742a91aa741b4e064f0ba3f026228449718fa08f16
MD5 b05778693f2d8a0a595dc959847053f5
BLAKE2b-256 acd37a2564b4841af02b5672f23f274172e76449903c51e4e4a29a7b2fd98340

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_genai-1.2.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_genai-1.2.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 40772031e9f3c3e3b694294c9a4031a756b9701cf95f124c29038d0c4d25e133
MD5 27aa9263317c1d0698fb7bd169fed1c2
BLAKE2b-256 1c368e83e9abdb42c82f18cf820e1ae9daf97055f023b8e94b58764931ceb300

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_genai-1.2.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_genai-1.2.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 62f38b31c1349401481b83fe006340c78e7625c7f72a023622ecaf7d05fd064c
MD5 8631671121926c2d0fae85160e9dcf85
BLAKE2b-256 b2ab9a9d70ab83b33ad866b21a6336856d8e982d87171d2c069a5c0f44b76307

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_genai-1.2.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_genai-1.2.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 6ea326448f824327529bdef69ad9dab3696262b452ec74e779767e3de424e9ac
MD5 1ec00bee463e733a3742a5b414704857
BLAKE2b-256 ff790740d9d4999d91ab1d0eb58227d638ac4f6b28bdc8e62efff457348fe6da

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page